hidden__pca_fs <- function(expr_mat, pcs = c(1,2)) {
pca <- prcomp(log(expr_mat+1)/log(2));
if (length(pcs) > 1) {
score <- Matrix::rowSums(abs(pca$x[,pcs]))
} else {
score <- abs(pca$x[,pcs])
}
names(score) = rownames(expr_mat);
return(sort(-score))
}
irlbaPcaFS <- function(expr_mat, pcs=c(2,3)) {
#require("irlba")
#require("Matrix")
norm <- expr_mat
nz_genes <- which(Matrix::rowSums(norm) != 0)
norm[nz_genes,] <- log(norm[nz_genes,] + 1)/log(2)
# Create sparse Matrix
gene_names <- rownames(norm);
norm <- Matrix::Matrix(norm, sparse=TRUE)
rownames(norm) <- gene_names
#indices <- which(norm > 0, arr.ind=TRUE)
#vals <- norm[indices]
nc <- ncol(norm)
#norm <- Matrix::sparseMatrix(i = indices[,1], j=indices[,2], x=vals)
# Calculate the variance across genes without converting to a dense
# matrix:
expression_means <- Matrix::rowMeans(norm)
expression_vars <- Matrix::rowMeans((norm - expression_means)^2)*(nc/(nc-1)) # sample variance.
# Filter out genes that are constant across all cells:
genes_to_keep <- expression_vars > 0
norm <- norm[genes_to_keep,]
expression_means <- expression_means[genes_to_keep]
expression_vars <- expression_vars[genes_to_keep]
# Hereā¬s how to take the top PCA loading genes, but using
# sparseMatrix operations the whole time, using irlba.
irlba_pca_res <- irlba::irlba(Matrix::t(norm), nu=0, center=expression_means, scale=sqrt(expression_vars), right_only=TRUE)$v
row.names(irlba_pca_res) <- row.names(norm)
if (length(pcs) > 1) {
score <- Matrix::rowSums(abs(irlba_pca_res[, pcs]))
} else {
score <- abs(irlba_pca_res[, pcs])
}
names(score) = gene_names;
return(sort(-score))
}
hidden__Grun_fs <- function(expr_mat, spikes) {
# if (!is.factor(batches)) { batches <- factor(batches) }
# batch_spikes <- sapply(levels(batches), function(b) {rowMeans(expr_mat[spikes,batches==b])})
spike_T <- rowMeans(expr_mat[spikes,])
beta2 <- apply(expr_mat, 2, function(c) {lm(c[spikes]~spike_T)})
# Model 3
beta3 <- expr_mat[spikes,]/spike_T
fit_gamma <- function(x) {
b = var(x)/mean(x)
a = mean(x)/b
return(c(a,1/b))
}
gammas <- apply(beta3, 1, fit_gamma)
a_fit = lm(gammas[1,] ~ spike_T)
b_fit = lm(gammas[2,] ~ spike_T)
get_nb_params <- function(mu) {
a = a_fit$coefficients[1]+a_fit$coefficients[2]*mu
b = b_fit$coefficients[1]+b_fit$coefficients[2]*mu
nb_mu = mu*a/b
nb_size = a
return(c(nb_mu, nb_size))
}
gammas <- log(gammas)/log(2)
a_fit_l = lm(gammas[1,] ~ spike_T)
b_fit_l = lm(gammas[2,] ~ spike_T)
ka = a_fit_l$coefficients[1]
kb = b_fit_l$coefficients[1]
fa = a_fit_l$coefficients[2]
fb = b_fit_l$coefficients[2]
get_nb_params_l <- function(mu) {
r = 2^(ka+fa*(kb-ka)/(1+fa-fb))*mu^((fa)/(1+fa-fb))
return(r)
}
# deconvolution
min_fun <- function(bio, ns, u_g, r_g) {
u_bio=bio[1]
r_bio=bio[2]
diff <- function(n) {
ms = 1:(2*n)
deconvolve = sum(sapply(ms, function(m) {dnbinom(n,mu=m,size=get_nb_params_l(m))*dnbinom(m,mu=u_bio, size=r_bio)}));
abs(dnbinom(n, mu=u_g, size=r_g) - deconvolve)
}
sum(sapply(ns, diff));
}
get_bio_disp <- function(g) {
# g = expr_mat[1,]
u_g = mean(g);
v_g = var(g);
if (v_g <= u_g) {v_g = u_g+10^-10}
r_g = u_g^2/(v_g-u_g)
stuff = optim(c(u_g, r_g), min_fun, ns=round(g), u_g=u_g, r_g=r_g, method="BFGS")
return(stuff$par[2])
}
bio_disp <- apply(expr_mat, 1, get_bio_disp)
names(bio_disp) = rownames(expr_mat);
return(bio_disp)
}
# How does GiniClust do it?
hidden__ginifs_simple <- function(expr_mat) {
#require("reldist")
ginis <- apply(expr_mat, 1, reldist::gini)
d <- rowMeans(expr_mat>0)
reg <- lm(ginis~d) # almost perfect linear relation in UMI data
score <- reg$res
return(sort(-score));
}
giniFS <- function(expr_mat, suppress.plot=TRUE) {
# GiniClust
expr_mat <- expr_mat[Matrix::rowSums(expr_mat) > 0,]
#require("reldist")
ginis <- apply(expr_mat, 1, reldist::gini)
max_expr <- apply(expr_mat, 1, max)
max_expr <- log(max_expr+1)/log(2)
fit = loess(ginis~max_expr)
outliers = abs(fit$residuals)
outliers = outliers > quantile(outliers, probs=0.75)
fit2 = loess(ginis[!outliers]~max_expr[!outliers])
norm_ginis = rep(NA, times=length(ginis));
norm_ginis[!outliers] = fit2$residuals;
to_impute = which(is.na(norm_ginis))
impute_loess <- function(i) {
d = abs(max_expr-max_expr[i])
closest = which(d[!outliers] == min(d[!outliers]))
imputed = fit2$fitted[closest[1]]
return(imputed)
}
fit_ginis = sapply(to_impute, impute_loess)
norm_ginis[outliers] = ginis[outliers]-fit_ginis
p = pnorm(norm_ginis, mean=mean(norm_ginis), sd=sd(norm_ginis), lower.tail=FALSE)
names(p) = rownames(expr_mat)
if (!suppress.plot) {
my_cols <- colorRampPalette(c("grey75","black"))(20);
plot(max_expr, ginis, pch=16, col=rev(my_cols)[cut(log(p), breaks=20)], xlab="Max Expression", ylab="Gini");
legend("bottomleft", bty="n", c("Color indicates estimated p-value"), col="white", pch=16, cex=0.75)
tmp <- order(max_expr);
yes <- rep(NA, times=length(ginis)); yes[!outliers]= fit2$fitted; yes[outliers] = fit_ginis
lines(max_expr[tmp], yes[tmp], col="red", lwd=3)
}
return(sort(p));
}
corFS <- function(expr_mat, dir=c("both", "pos", "neg"), fdr=NULL) {
# High memory
expr_mat <- as.matrix(expr_mat);
if (!is.null(fdr)) {
cor_mat = Hmisc::rcorr(t(expr_mat), type="spearman")
p_mat <- cor_mat$P
cor_mat <- cor_mat$r
} else {
cor_mat <- cor(t(expr_mat), method="spearman")
}
diag(cor_mat) <- 0
if (dir[1] == "both") {
score = apply(cor_mat, 1, function(x) {sum(abs(min(x)), abs(max(x)))})
} else if (dir[1] == "pos") {
score = apply(cor_mat, 1, max)
} else if (dir[1] == "neg") {
score = abs(apply(cor_mat, 1, min))
} else {
stop("Unrecognized direction")
}
if (!is.null(fdr)) {
sig <- matrix(p.adjust(p_mat, method="fdr"), ncol=ncol(p_mat))
score <- score[apply(sig, 1, min, na.rm=T) < fdr]
}
rm(cor_mat)
names(score) = rownames(expr_mat)
return(sort(-score))
}
Consensus_FS <- function(counts, norm=NA, is.spike=rep(FALSE, times=nrow(counts)), pcs=c(2,3), include_cors=TRUE) {
# Check input
#if (!is.matrix(counts)) {
# counts <- as.matrix(counts);
#}
if (sum(dim(counts) != dim(norm)) > 0) {
if (is.null(dim(norm))) {
if (length(norm) < ncol(counts)) {
# apply CPM
sf <- Matrix::colSums(counts[!is.spike,])
} else {
sf <- norm
}
norm <- t(t(counts)/sf*median(sf));
} else {
stop("Error: counts and norm matrices must be of the same dimension");
}
}
if (ncol(counts) < 1000) {
row_vars <- (rowMeans(counts^2)-rowMeans(counts)^2);
} else {
row_vars <- Matrix::rowSums(counts);
}
invariant <- row_vars == 0;
counts <- counts[!invariant,]
norm <- norm[!invariant,]
# apply FS methods
# DANB
fit <- NBumiFitModel(counts)
DANB <- NBumiFeatureSelectionCombinedDrop(fit)
DANB_var <- NBumiFeatureSelectionHighVar(fit)
# HVG
if (sum(is.spike == TRUE) > 10) {
spikes <- rownames(norm)[is.spike]
HVG <- BrenneckeGetVariableGenes(norm, spikes=spikes, fdr=2, suppress.plot=TRUE)
} else {
warning("Warning: insufficient spike-ins using all genes for HVG");
HVG <- BrenneckeGetVariableGenes(norm, fdr=2, suppress.plot=TRUE)
}
# M3Drop
m3drop <- M3DropFeatureSelection(norm, mt_method="fdr", mt_threshold=2, suppress.plot=TRUE)
# Gini
gini <- giniFS(norm)
# pca
pca_fs <- irlbaPcaFS(norm, pcs=pcs)
# cor
if (include_cors) {
cor_fs <- corFS(norm)
} else {
cor_fs <- rep(-1, times=nrow(norm));
names(cor_fs) <- rownames(norm);
}
# sort by mean_rank of each gene.
ranks <- 1:nrow(norm);
ref_order <- rownames(counts);
out_table <- data.frame(
DANB_drop = ranks[match(ref_order, DANB$Gene)],
DANB_var = ranks[match(ref_order, names(DANB_var))],
M3Drop = ranks[match(ref_order, m3drop$Gene)],
HVG = ranks[match(ref_order, HVG$Gene)],
PCA = ranks[match(ref_order, names(pca_fs))],
Cor = ranks[match(ref_order, names(cor_fs))],
Gini = ranks[match(ref_order, names(gini))]
)
if (!include_cors) {
out_table$Cor <- rep(-1, times=nrow(out_table));
}
rownames(out_table) <- ref_order;
consensus_score <- rowMeans(out_table, na.rm=TRUE);
out_table <- out_table[order(consensus_score),]
out_table$Cons <- 1:nrow(out_table)
return(out_table)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.