.sanitize_type_argument <- function(model, type = NULL, verbose = TRUE) {
# do nothing here...
if (is.null(type) || is.null(model)) {
return(NULL)
}
# do nothing for unrecognized model classes
model_class <- class(model)[1]
if (!model_class %in% .typedic$class) {
return(type)
}
# if "type" is no valid type, return most common valid type
valid_types <- .typedic$type[.typedic$class == model_class]
if (!type %in% valid_types) {
if (verbose) {
insight::format_alert(
paste0(
"\"", type, "\" is no valid option for the `scale` argument.",
" Changing to the supported \"", valid_types[1], "\"-type now."
)
)
}
return(valid_types[1])
}
# we have a valid type here
return(type)
}
# all valid "type" arguments for each model class.
# Run "marginaleffects:::type_dictionary_build()" to update this list
.typedic <- data.frame(
class = c(
"bam", "bam", "bart", "bart", "betareg", "betareg", "betareg",
"betareg", "betareg", "bife", "bife", "bracl", "brglmFit", "brglmFit",
"brmsfit", "brmsfit", "brmsfit", "brmsfit", "brmultinom", "brmultinom",
"clm", "clm", "clm", "clogit", "clogit", "clogit", "clogit",
"coxph", "coxph", "coxph", "coxph", "coxph_weightit", "coxph_weightit",
"coxph_weightit", "coxph_weightit", "crch", "crch", "crch", "crch",
"hetprob", "hetprob", "hxlr", "hxlr", "hxlr", "hxlr", "ivpml",
"ivpml", "flexsurvreg", "flexsurvreg", "flexsurvreg", "flexsurvreg",
"flexsurvreg", "flexsurvreg", "flexsurvreg", "flexsurvreg", "flexsurvreg",
"fixest", "fixest", "fixest", "hurdle", "hurdle", "hurdle", "hurdle",
"iv_robust", "lm", "gam", "gam", "Gam", "Gam", "Gam", "geeglm",
"geeglm", "Gls", "glimML", "glimML", "glm", "glm", "glm", "glmerMod",
"glmerMod", "glmgee", "glmrob", "glmrob", "glmmTMB", "glmmTMB",
"glmmTMB", "glmmTMB", "glmmTMB", "glmmTMB", "glmmPQL", "glmmPQL",
"glmx", "glm_weightit", "glm_weightit", "glm_weightit", "glm_weightit",
"glm_weightit", "ivreg", "lmerMod", "lmerModLmerTest", "lmrob",
"lm_robust", "lrm", "lrm", "lrm", "mblogit", "mblogit", "mblogit",
"mclogit", "mclogit", "mclogit", "MCMCglmm", "model_fit", "model_fit",
"model_fit", "workflow", "workflow", "workflow", "multinom",
"multinom", "multinom_weightit", "multinom_weightit", "multinom_weightit",
"mhurdle", "mhurdle", "mhurdle", "mlogit", "mvgam", "mvgam",
"mvgam", "mvgam", "mvgam", "negbin", "negbin", "negbin", "ols",
"oohbchoice", "oohbchoice", "orm", "orm", "orm", "ordinal_weightit",
"ordinal_weightit", "ordinal_weightit", "ordinal_weightit", "ordinal_weightit",
"polr", "rendo.base", "rendo.base", "rlm", "selection", "selection",
"selection", "speedlm", "speedglm", "speedglm", "stanreg", "stanreg",
"survreg", "survreg", "survreg", "svyglm", "svyglm", "svyolr",
"tobit", "tobit1", "tobit1", "tobit1", "zeroinfl", "zeroinfl",
"zeroinfl", "zeroinfl"
),
type = c(
"response", "link", "ev", "ppd", "response", "link", "precision",
"quantile", "variance", "response", "link", "probs", "response",
"link", "response", "link", "prediction", "average", "probs",
"class", "prob", "cum.prob", "linear.predictor", "expected",
"lp", "risk", "survival", "survival", "expected", "lp", "risk",
"survival", "expected", "lp", "risk", "response", "location",
"scale", "density", "pr", "xb", "location", "cumprob", "scale",
"density", "pr", "xb", "survival", "response", "mean", "link",
"lp", "linear", "rmst", "hazard", "cumhaz", "invlink(link)",
"response", "link", "response", "prob", "count", "zero", "response",
"response", "response", "link", "invlink(link)", "response",
"link", "response", "link", "lp", "response", "link", "invlink(link)",
"response", "link", "response", "link", "response", "response",
"link", "response", "link", "conditional", "zprob", "zlink",
"disp", "response", "link", "response", "invlink(link)", "probs",
"response", "lp", "link", "response", "response", "response",
"response", "response", "fitted", "lp", "mean", "response", "latent",
"link", "response", "latent", "link", "response", "numeric",
"prob", "class", "numeric", "prob", "class", "probs", "latent",
"probs", "response", "mean", "E", "Ep", "p", "response", "response",
"link", "expected", "detection", "latent_N", "invlink(link)",
"response", "link", "lp", "probability", "utility", "fitted",
"mean", "lp", "probs", "response", "link", "lp", "mean", "probs",
"response", "link", "response", "response", "link", "unconditional",
"response", "response", "link", "response", "link", "response",
"link", "quantile", "response", "link", "probs", "response",
"expvalue", "linpred", "prob", "response", "prob", "count", "zero"
),
stringsAsFactors = FALSE
)
# the default "type" arguments for each model class. Used to set the
# default type in "ggaverage()"
# Run following code to update this list:
# x <- marginaleffects:::type_dictionary_build()
# x[!duplicated(x$class), ]
# Finally, add "other" as first element to "class" and "response" to "type"
.default_type <- data.frame(
class = c(
"other",
"bam", "bart", "betareg", "bife", "bracl",
"brglmFit", "brmsfit", "brmultinom", "clm", "clogit", "coxph",
"coxph_weightit", "crch", "hetprob", "hxlr", "ivpml", "flexsurvreg",
"fixest", "hurdle", "iv_robust", "lm", "gam", "Gam", "geeglm",
"Gls", "glimML", "glm", "glmerMod", "glmgee", "glmrob", "glmmTMB",
"glmmPQL", "glmx", "glm_weightit", "ivreg", "lmerMod", "lmerModLmerTest",
"lmrob", "lm_robust", "lrm", "mblogit", "mclogit", "MCMCglmm",
"model_fit", "workflow", "multinom", "multinom_weightit", "mhurdle",
"mlogit", "mvgam", "negbin", "ols", "oohbchoice", "orm", "ordinal_weightit",
"polr", "rendo.base", "rlm", "selection", "speedlm", "speedglm",
"stanreg", "survreg", "svyglm", "svyolr", "tobit", "tobit1",
"zeroinfl"
),
type = c(
"response",
"response", "ev", "response", "response",
"probs", "response", "response", "probs", "prob", "expected",
"survival", "survival", "response", "pr", "location", "pr", "survival",
"invlink(link)", "response", "response", "response", "response",
"invlink(link)", "response", "lp", "response", "invlink(link)",
"response", "response", "response", "response", "response", "response",
"invlink(link)", "response", "response", "response", "response",
"response", "fitted", "response", "response", "response", "numeric",
"numeric", "probs", "probs", "E", "response", "response", "invlink(link)",
"lp", "probability", "fitted", "probs", "probs", "response",
"response", "response", "response", "response", "response", "response",
"response", "probs", "response", "expvalue", "response"
),
stringsAsFactors = FALSE
)
.validate_type_argument <- function(model,
type,
marginaleffects = FALSE,
emmeans_call = FALSE) {
# marginaleffects supports the predict-method types
# we need a different approach to validation here
if (marginaleffects) {
# for zero-inflation models, we need to find the correct name
# for the type argument...
is_zero_inflated <- insight::model_info(model)$is_zero_inflated
if (is_zero_inflated) {
if (inherits(model, "glmmTMB")) {
types <- c("conditional", "zprob")
} else {
types <- c("count", "zero")
}
}
# first, we overwrite the "default"
if (type == "fixed") {
if (is_zero_inflated) {
type <- types[1]
} else if (class(model)[1] %in% .default_type$class) {
type <- .default_type$type[.default_type$class == class(model)[1]]
} else {
type <- "response"
}
} else if (type %in% c("zi", "zero_inflated", "fe.zi")) {
type <- "response"
} else if (type %in% c("zi.prob", "zi_prob")) {
type <- types[2]
}
# check which types are supported by the model's predict-method
type_options <- .typedic$type[.typedic$class == class(model)[1]]
if (!type %in% c("response", type_options)) {
insight::format_error(sprintf(
"`type = \"%s\"` is not supported. Please use %s%s.",
type,
if (length(type_options) > 1) "one of " else "",
toString(paste0("`", type_options, "`"))
))
}
return(type)
}
# if we call "predict()" or "emmeans()", we have these different options
if (emmeans_call) {
type_choices <- c("fixed", "count", "zero_inflated", "zi_prob")
} else {
type_choices <- c(
"fixed", "count", "random", "zero_inflated", "zi_random",
"zero_inflated_random", "zi_prob", "simulate", "survival",
"cumulative_hazard", "simulate_random", "debug", "quantile" # for survreg
)
}
type <- insight::validate_argument(type, type_choices)
switch(type,
count = "fixed",
zi_random = "zero_inflated_random",
type
)
}
.retrieve_type_option <- function(model) {
# retrieve model object's predict-method prediction-types (if any)
predict_method <- .safe(lapply(
class(model), function(i) {
utils::getS3method("predict", i)
}
))
# check whether model class has a predict method
if (!is.null(predict_method)) {
predict_method <- predict_method[!vapply(predict_method, is.null, TRUE)][[1]]
}
# retrieve model object's predict-method prediction-types (if any)
.safe(suppressWarnings(eval(formals(predict_method)$type)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.