.post_processing_labels_and_data <- function(model,
result,
original_model_frame,
data_grid,
cleaned_terms,
original_terms,
model_info,
type,
prediction.interval,
at_list,
condition = NULL,
ci_level = 0.95,
back_transform = FALSE,
vcov_args = NULL,
margin = NULL,
model_name = NULL,
bias_correction = FALSE,
verbose = TRUE) {
# check if outcome is log-transformed, and if so,
# back-transform predicted values to response scale
# but first, save original predicted values, to save as attribute
if (back_transform) {
untransformed_predictions <- result$predicted
response_transform <- insight::find_terms(model, verbose = FALSE)[["response"]]
} else {
untransformed_predictions <- response_transform <- NULL
}
result <- .back_transform_response(model, result, back_transform, verbose = verbose)
attr(result, "model.name") <- model_name
# add raw data as well
attr(result, "rawdata") <- .back_transform_data(
model,
mydf = .get_raw_data(model, original_model_frame, cleaned_terms),
back_transform = back_transform
)
# get axis titles and labels
all.labels <- .get_axis_titles_and_labels(
model,
original_model_frame = original_model_frame,
terms = cleaned_terms,
fun = .get_model_function(model),
model_info = model_info,
no.transform = FALSE,
type = type,
at_list = at_list,
averaged_predictions = isTRUE(attr(result, "averaged_predictions", exact = TRUE))
)
# set attributes with necessary information
.set_attributes_and_class(
data = result,
model = model,
t.title = all.labels$t.title,
x.title = all.labels$x.title,
y.title = all.labels$y.title,
l.title = all.labels$l.title,
legend.labels = attr(result, "legend.labels"),
x.axis.labels = all.labels$axis.labels,
model_info = model_info,
constant.values = attr(data_grid, "constant.values", exact = TRUE),
terms = cleaned_terms,
original_terms = original_terms,
at_list = at_list,
n.trials = attr(data_grid, "n.trials", exact = TRUE),
prediction.interval = prediction.interval,
condition = condition,
ci_level = ci_level,
type = type,
untransformed_predictions = untransformed_predictions,
back_transform = back_transform,
response_transform = response_transform,
original_model_frame = original_model_frame,
vcov_args = vcov_args,
margin = margin,
bias_correction = bias_correction,
verbose = verbose
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.