#' Pool Predictions or Estimated Marginal Means
#'
#' This function "pools" (i.e. combines) multiple `ggeffects` objects, in
#' a similar fashion as [`mice::pool()`].
#'
#' @param x A list of `ggeffects` objects, as returned by [`predict_response()`].
#' @param ... Currently not used.
#'
#' @details Averaging of parameters follows Rubin's rules (*Rubin, 1987, p. 76*).
#' Pooling is applied to the predicted values on the scale of the *linear predictor*,
#' not on the response scale, in order to have accurate pooled estimates and
#' standard errors. The final pooled predicted values are then transformed to
#' the response scale, using [`insight::link_inverse()`].
#'
#' @references
#' Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York:
#' John Wiley and Sons.
#'
#' @examplesIf require("mice")
#' # example for multiple imputed datasets
#' data("nhanes2", package = "mice")
#' imp <- mice::mice(nhanes2, printFlag = FALSE)
#' predictions <- lapply(1:5, function(i) {
#' m <- lm(bmi ~ age + hyp + chl, data = mice::complete(imp, action = i))
#' predict_response(m, "age")
#' })
#' pool_predictions(predictions)
#' @return A data frame with pooled predictions.
#' @export
pool_predictions <- function(x, ...) {
# check input -----
obj_name <- deparse(substitute(x), width.cutoff = 500)
original_x <- x
if (!all(vapply(x, inherits, logical(1), "ggeffects"))) {
insight::format_error(
"`x` must be a list of `ggeffects` objects, as returned by `predict_response()`."
)
}
# check if all x-levels are identical
if (!all(apply(as.data.frame(sapply(x, function(i) i$x), simplify = TRUE), 1, function(j) length(unique(j)) == 1))) {
insight::format_error(paste0(
"Cannot pool predictions. The values of the focal term '",
attributes(x[[1]])$terms,
"' are not identical across predictions."
))
}
# preparation ----
len <- length(x)
ci <- attributes(x[[1]])$ci_level
dof <- attributes(x[[1]])$df
link_inv <- attributes(x[[1]])$link_inverse
link_fun <- attributes(x[[1]])$link_function
back_transform <- isTRUE(attributes(x[[1]])$back_transform)
if (is.null(link_inv)) {
link_inv <- function(x) x
}
if (is.null(link_fun)) {
link_fun <- function(x) x
}
if (is.null(dof)) {
dof <- Inf
}
# pool predictions -----
pooled_predictions <- original_x[[1]]
n_rows <- nrow(original_x[[1]])
for (i in 1:n_rows) {
# pooled estimate
pooled_pred <- unlist(lapply(original_x, function(j) {
if (back_transform) {
untransformed_predictions <- attributes(j)$untransformed_predictions
if (!is.null(untransformed_predictions)) {
link_fun(untransformed_predictions[i])
} else {
link_fun(j$predicted[i])
}
} else {
link_fun(j$predicted[i])
}
}), use.names = FALSE)
pooled_predictions$predicted[i] <- mean(pooled_pred, na.rm = TRUE)
# pooled standard error
pooled_se <- unlist(lapply(original_x, function(j) {
j$std.error[i]
}), use.names = FALSE)
ubar <- mean(pooled_se^2, na.rm = TRUE)
tmp <- ubar + (1 + 1 / len) * stats::var(pooled_pred)
pooled_predictions$std.error[i] <- sqrt(tmp)
}
# pooled degrees of freedom for t-statistics
pooled_df <- .barnad_rubin(
m = nrow(pooled_predictions),
b = stats::var(pooled_predictions$predicted),
t = pooled_predictions$std.error^2,
dfcom = dof
)
# confidence intervals ----
alpha <- (1 + ci) / 2
fac <- stats::qt(alpha, df = pooled_df)
pooled_predictions$conf.low <- link_inv(pooled_predictions$predicted - fac * pooled_predictions$std.error)
pooled_predictions$conf.high <- link_inv(pooled_predictions$predicted + fac * pooled_predictions$std.error)
# backtransform
pooled_predictions$predicted <- link_inv(pooled_predictions$predicted)
# backtransform response
if (back_transform) {
pooled_predictions <- .back_transform_response(
model = NULL,
pooled_predictions,
back_transform = TRUE,
response.name = attributes(original_x[[1]])$response_transform
)
}
# constant values
constant.values <- as.data.frame(do.call(rbind, lapply(original_x, function(x) {
as.data.frame(attributes(x)$constant.values)
})))
attr(pooled_predictions, "constant.values") <- lapply(constant.values, function(i) {
if (is.numeric(i)) {
mean(i)
} else {
unique(i)
}
})
pooled_predictions
}
# helper ------
# adjustment for degrees of freedom
.barnad_rubin <- function(m, b, t, dfcom = 999999) {
# fix for z-statistic
if (is.null(dfcom) || all(is.na(dfcom)) || all(is.infinite(dfcom))) {
return(Inf)
}
lambda <- (1 + 1 / m) * b / t
lambda[lambda < 1e-04] <- 1e-04
dfold <- (m - 1) / lambda^2
dfobs <- (dfcom + 1) / (dfcom + 3) * dfcom * (1 - lambda)
result <- dfold * dfobs / (dfold + dfobs)
pmax(round(mean(result, na.rm = TRUE)), 1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.