R/ggeffect.R

Defines functions .validate_dot_arguments .effect_latent_predictions .effect_prob_predictions .create_eff_group .ggeffect_helper ggeffect

Documented in ggeffect

#' @rdname ggpredict
#' @export
ggeffect <- function(model, terms, ci_level = 0.95, bias_correction = FALSE, verbose = TRUE, ...) {
  insight::check_if_installed("effects")
  model_name <- deparse(substitute(model))

  # check formula
  insight::formula_ok(model, verbose = verbose)

  # process "terms", so we have the default character format. Furthermore,
  # check terms argument, to make sure that terms were not misspelled and are
  # indeed existing in the data
  if (!missing(terms)) {
    terms <- .reconstruct_focal_terms(terms, model)
  }

  # tidymodels?
  if (inherits(model, "model_fit")) {
    model <- model$fit
  }

  if (inherits(model, "list") && !inherits(model, c("bamlss", "maxLik"))) {
    res <- lapply(model, .ggeffect_helper, terms, ci_level = ci_level, bias_correction = bias_correction, verbose, ...)
  } else if (missing(terms) || is.null(terms)) {
    predictors <- insight::find_predictors(
      model,
      effects = "fixed",
      component = "conditional",
      flatten = TRUE,
      verbose = FALSE
    )
    res <- lapply(
      predictors,
      function(.x) {
        tmp <- .ggeffect_helper(model, terms = .x, ci_level = ci_level, bias_correction = bias_correction, verbose, ...)
        if (!is.null(tmp)) {
          tmp$group <- .x
        }
        tmp
      }
    )
    no_results <- vapply(res, is.null, logical(1))
    res <- .compact_list(res)
    if (!is.null(res) && !.is_empty(res)) {
      names(res) <- predictors[!no_results]
      class(res) <- c("ggalleffects", class(res))
    } else {
      res <- NULL
    }
  } else {
    res <- .ggeffect_helper(model, terms, ci_level = ci_level, bias_correction = bias_correction, verbose, ...)
  }

  if (!is.null(res)) {
    attr(res, "model.name") <- model_name
  }
  res
}


.ggeffect_helper <- function(model,
                             terms,
                             ci_level,
                             bias_correction = FALSE,
                             verbose = TRUE,
                             ...) {
  # check terms argument
  original_terms <- terms

  # clean "terms" from possible brackets
  cleaned_terms <- .clean_terms(terms)

  # get data, for data grid later
  original_model_frame <- .get_model_data(model)

  # get model family and information
  model_info <- .get_model_info(model)

  # additional arguments
  additional_dot_args <- list(...)

  # check valid additional arguments
  .validate_dot_arguments(
    additional_dot_args,
    not_allowed = c(
      "type", "typical", "condition", "back_transform", "vcov",
      "vcov_args", "weights"
    ),
    fun = "ggeffect()"
  )

  # check if bias-correction is appropriate
  bias_correction <- .check_bias_correction(
    model,
    type = "fixed",
    bias_correction = bias_correction,
    verbose = verbose
  )

  # check whether we have an argument "transformation" for effects()-function
  # in this case, we need another default title, since we have non-transformed effects
  t.add <- which(names(additional_dot_args) == "transformation")
  # if we have a "transformation" argument, and it's NULL,
  # no transformation of scale
  no.transform <- !.is_empty(t.add) && is.null(eval(additional_dot_args[[t.add]]))


  # check if we have specific levels in square brackets
  at_values <- .get_representative_values(terms, original_model_frame)

  # clear argument from brackets
  terms <- .clean_terms(terms)

  # check for character vectors, transform to factor
  is_char <- vapply(original_model_frame[terms], is.character, logical(1))
  if (any(is_char)) {
    for (.i in terms[is_char]) {
      original_model_frame[[.i]] <- as.factor(original_model_frame[[.i]])
    }
  }

  # fix remaining x-levels
  conditional_terms <- which(!(terms %in% names(at_values)))
  if (!.is_empty(conditional_terms)) {
    xl <- .prettify_data(conditional_terms, original_model_frame, terms)
    names(xl) <- terms[conditional_terms]
    at_values <- c(at_values, xl)
  }

  # restore inital order of focal predictors
  at_values <- at_values[match(terms, names(at_values))]

  # compute adjusted predictions for each model term
  eff <- tryCatch(
    suppressMessages(suppressWarnings(
      effects::Effect(
        focal.predictors = terms,
        mod = model,
        xlevels = at_values,
        confidence.level = ci_level,
        ...
      )
    )),
    error = function(e) {
      if (verbose) {
        insight::print_color("Can't compute adjusted predictions, `effects::Effect()` returned an error.\n\n", "red")
        cat(sprintf("Reason: %s\n", e$message))
        cat("You may try `ggpredict()` or `ggemmeans()`.\n\n")
      }
      NULL
    }
  )

  # return NULL on error
  if (is.null(eff)) {
    return(NULL)
  }

  # build data frame, with raw values
  # predicted response and lower/upper ci

  dof <- .get_df(model)

  if (inherits(model, c("polr", "clm", "clm2", "clmm", "clmm2", "multinom", "nestedLogit"))) {
    # if predictions on the latent scale are requested, different handling here
    if (isTRUE(additional_dot_args$latent)) {
      tmp <- .effect_latent_predictions(eff, model, terms, ci_level, dof)
      no.transform <- TRUE
    } else {
      # for categorical outcomes, we need to gather the data
      # from effects to get a single data frame, unless we have latent = TRUE
      tmp <- .effect_prob_predictions(eff, model, terms, ci_level, dof)
    }
    fx.term <- eff$term
  } else {
    # check for multi response

    .ne <- names(eff)
    .mv <- insight::find_response(model, combine = FALSE)

    if (length(.ne) == length(.mv) && all.equal(.ne, .mv)) {
      l <- lapply(names(eff), function(.x) {
        tmpl <- data.frame(
          x = eff[[.x]]$x[[terms[1]]],
          predicted = eff[[.x]]$fit,
          std.error = eff[[.x]]$se,
          conf.low = eff[[.x]]$lower,
          conf.high = eff[[.x]]$upper,
          response.level = .x,
          stringsAsFactors = FALSE
        )
        .create_eff_group(tmpl, terms, eff, sub = .x)
      })
      tmp <- do.call(rbind, l)
      fx.term <- eff[[1]]$term
    } else {
      tmp <- data.frame(
        x = eff$x[[terms[1]]],
        predicted = eff$fit,
        std.error = eff$se,
        conf.low = eff$lower,
        conf.high = eff$upper,
        stringsAsFactors = FALSE
      )

      tmp <- .create_eff_group(tmp, terms, eff, sub = NULL)

      # effects-package keeps the order of numeric value as they are
      # returned by "unique()", so we want to sort the data frame
      # in the order of ascending values

      if (is.numeric(eff$data[[terms[1]]])) {
        tmp <- tmp[order(tmp$x), , drop = FALSE]
      }
      fx.term <- eff$term
    }
  }


  if (!no.transform) {
    linv <- .link_inverse(model, bias_correction = bias_correction, ...)
    tmp$predicted <- linv(tmp$predicted)
    tmp$conf.low <- linv(tmp$conf.low)
    tmp$conf.high <- linv(tmp$conf.high)
  }


  # init legend labels
  legend.labels <- NULL

  # get axis titles and labels
  all.labels <- .get_axis_titles_and_labels(
    model,
    original_model_frame,
    terms,
    .get_model_function(model),
    model_info = model_info,
    no.transform,
    type = NULL
  )


  # slice data, only select observations that have specified
  # levels for the grouping variables

  # for numeric values with many decimal places, we need to round
  if (.frac_length(tmp$x) > 5) {
    filter.keep <- round(tmp$x, 5) %in% round(at_values[[1]], 5)
  } else {
    filter.keep <- tmp$x %in% at_values[[1]]
  }

  tmp <- tmp[filter.keep, , drop = FALSE]

  # slice data, only select observations that have specified
  # levels for the facet variables
  if (length(at_values) > 1) {
    filter.keep <- tmp$group %in% at_values[[2]]
    tmp <- tmp[filter.keep, , drop = FALSE]
  }

  # slice data, only select observations that have specified
  # levels for the facet variables
  if (length(at_values) > 2) {
    filter.keep <- tmp$facet %in% at_values[[3]]
    tmp <- tmp[filter.keep, , drop = FALSE]
  }


  # label grouping variables, for axis and legend labels in plot
  if (length(terms) > 1) {
    # grouping variable may not be labelled
    # do this here, so we convert to labelled factor later
    tmp <- .add_labels_to_groupvariable(tmp, original_model_frame, terms)

    # convert to factor for proper legend
    tmp <- .groupvariable_to_labelled_factor(tmp)

    # check if we have legend labels
    legend.labels <- .get_labels(tmp$group, attr.only = FALSE, drop.unused = TRUE)
  }


  # convert to data frame
  result <- as.data.frame(tmp, stringsAsFactors = FALSE)

  if (is.null(result$group)) {
    result$group <- as.factor(1)
  }

  if (length(terms) > 1) {
    attr(result, "continuous.group") <- is.numeric(original_model_frame[[terms[2]]]) & is.null(attr(original_model_frame[[terms[2]]], "labels"))
  } else {
    attr(result, "continuous.group") <- FALSE
  }

  # add raw data as well
  attr(result, "rawdata") <- .get_raw_data(model, original_model_frame, terms)

  x_v <- original_model_frame[[fx.term]]
  if (is.null(x_v)) {
    xif <- ifelse(is.factor(tmp$x), "1", "0")
  } else {
    xif <- ifelse(is.factor(x_v), "1", "0")
  }

  attr(result, "x.is.factor") <- xif

  # set attributes with necessary information
  .set_attributes_and_class(
    data = result,
    model = model,
    t.title = all.labels$t.title,
    x.title = all.labels$x.title,
    y.title = all.labels$y.title,
    l.title = all.labels$l.title,
    legend.labels = legend.labels,
    x.axis.labels = all.labels$axis.labels,
    model_info = model_info,
    terms = cleaned_terms,
    at_list = at_values,
    original_terms = original_terms,
    ci_level = ci_level,
    margin = "marginalmeans",
    latent = isTRUE(additional_dot_args$latent),
    latent_thresholds = eff$thresholds
  )
}


.create_eff_group <- function(tmp, terms, eff, sub) {
  if (!is.null(sub)) {
    fx <- eff[[sub]]
  } else {
    fx <- eff
  }

  if (isTRUE(fx$variables[[1]]$is.factor)) {
    tmp$x <- factor(tmp$x, levels = fx$variables[[1]]$levels)
  }

  # with or w/o grouping factor?
  if (length(terms) == 1) {
    # convert to factor for proper legend
    tmp$group <- as.factor(1)
  } else if (length(terms) == 2) {
    tmp$group <- if (isTRUE(fx$variables[[2]]$is.factor)) {
      factor(fx$x[[terms[2]]], levels = fx$variables[[2]]$levels)
    } else {
      as.factor(fx$x[[terms[2]]])
    }
  } else {
    tmp$group <- if (isTRUE(fx$variables[[2]]$is.factor)) {
      factor(fx$x[[terms[2]]], levels = fx$variables[[2]]$levels)
    } else {
      as.factor(fx$x[[terms[2]]])
    }
    tmp$facet <- if (isTRUE(fx$variables[[3]]$is.factor)) {
      factor(fx$x[[terms[3]]], levels = fx$variables[[3]]$levels)
    } else {
      as.factor(fx$x[[terms[3]]])
    }
  }

  tmp
}


.effect_prob_predictions <- function(eff, model, terms, ci_level, dof) {
  eff.logits <- as.data.frame(eff$logit, stringsAsFactors = FALSE)
  tmp <- cbind(eff$x, eff.logits)
  ft <- (ncol(tmp) - ncol(eff.logits) + 1):ncol(tmp)
  tmp <- .gather(
    tmp,
    names_to = "response.level",
    values_to = "predicted",
    colnames(tmp)[ft]
  )

  new_names <- c("x", "group", "facet", "panel", "grid")[seq_along(terms)]
  colnames(tmp)[seq_along(terms)] <- new_names

  if (!is.null(ci_level) && !is.na(ci_level)) {
    ci <- 1 - ((1 - ci_level) / 2)
  } else {
    ci <- 0.975
  }

  # degrees of freedom
  dof <- .get_df(model)
  tcrit <- stats::qt(ci, df = dof)

  # same for standard errors. we need to gather all data frames together,
  # compute CI manually and then also fix column names.

  eff.se.logits <- as.data.frame(eff$se.logit)
  tmp2 <- .gather(
    eff.se.logits,
    names_to = "response.level",
    values_to = "se",
    colnames(eff.se.logits)
  )
  tmp2$conf.low <- tmp$predicted - tcrit * tmp2$se
  tmp2$conf.high <- tmp$predicted + tcrit * tmp2$se
  tmp2$std.error <- tmp2$se

  tmp <- cbind(tmp, tmp2[, c("std.error", "conf.low", "conf.high")])
  if (!inherits(model, "nestedLogit")) {
    tmp$response.level <- substr(tmp$response.level, 7, max(nchar(tmp$response.level)))
  }

  # sort columns
  valid_cols <- intersect(
    c("x", "predicted", "std.error", "conf.low", "conf.high", "response.level", "group", "facet"),
    colnames(tmp)
  )

  tmp[valid_cols]
}


.effect_latent_predictions <- function(eff, model, terms, ci_level, dof) {
  tmp <- as.data.frame(eff)
  # rename columns
  colnames(tmp)[colnames(tmp) == "fit"] <- "predicted"
  colnames(tmp)[colnames(tmp) == "se"] <- "std.error"

  new_names <- c("x", "group", "facet", "panel", "grid")[seq_along(terms)]
  for (i in seq_along(new_names)) {
    colnames(tmp)[colnames(tmp) == terms[i]] <- new_names[i]
  }

  # remove CI
  tmp$lower <- tmp$upper <- NULL

  if (!is.null(ci_level) && !is.na(ci_level)) {
    ci <- 1 - ((1 - ci_level) / 2)
  } else {
    ci <- 0.975
  }

  # degrees of freedom
  dof <- .get_df(model)
  tcrit <- stats::qt(ci, df = dof)
  # CI
  tmp$conf.low <- tmp$predicted - tcrit * tmp$std.error
  tmp$conf.high <- tmp$predicted + tcrit * tmp$std.error

  # sort columns
  valid_cols <- intersect(
    c(
      "x", "predicted", "std.error", "conf.low", "conf.high",
      "group", "facet", "panel", "grid"
    ),
    colnames(tmp)
  )

  tmp[valid_cols]
}


.validate_dot_arguments <- function(dot_args, not_allowed, fun) {
  if (!.is_empty(dot_args)) {
    not_allowed <- intersect(names(dot_args), not_allowed)
    if (!.is_empty(not_allowed)) {
      insight::format_alert(
        sprintf(
          "The following arguments are not supported by `%s` and will be ignored: %s\n",
          fun,
          toString(not_allowed)
        )
      )
    }
  }
}
strengejacke/ggeffects documentation built on Dec. 24, 2024, 3:27 a.m.