#' @export
get_predictions.wbm <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level))
ci <- (1 + ci_level) / 2
else
ci <- 0.975
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# check whether predictions should be conditioned
# on random effects (grouping level) or not.
if (type == "fixed") {
ref <- NA
} else {
ref <- NULL
}
if (type == "simulate") {
# simulate predictions
data_grid <- .do_simulate(model, terms, ci, ...)
} else {
# get model frame, that also includes prepared data, like demeaned etc.
transformed_data <- insight::get_data(model, source = "frame", verbose = FALSE)
# find variables that are in the model frame, but not in the new data
new_vars <- setdiff(colnames(transformed_data), colnames(data_grid))
# bind to data grid
data_grid <- cbind(data_grid, transformed_data[1, new_vars])
pred <- suppressWarnings(stats::predict(
model,
newdata = data_grid,
type = "link",
re.form = ref,
allow.new.levels = TRUE,
use.re.var = type == "random",
se.fit = se,
...
))
if (se) {
data_grid$predicted <- link_inverse(pred$fit)
data_grid$conf.low <- link_inverse(pred$fit - tcrit * pred$se.fit)
data_grid$conf.high <- link_inverse(pred$fit + tcrit * pred$se.fit)
# copy standard errors
attr(data_grid, "std.error") <- pred$se.fit
} else {
data_grid$predicted <- link_inverse(as.vector(pred))
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
}
data_grid
}
#' @export
get_predictions.wblm <- get_predictions.wbm
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.