#' @export
get_predictions.merMod <- function(model,
data_grid = NULL,
terms = NULL,
ci_level = 0.95,
type = NULL,
typical = NULL,
vcov = NULL,
vcov_args = NULL,
condition = NULL,
interval = "confidence",
bias_correction = FALSE,
link_inverse = insight::link_inverse(model),
model_info = NULL,
verbose = TRUE,
...) {
# does user want standard errors?
se <- !is.null(ci_level) && !is.na(ci_level)
# compute ci, two-ways
if (!is.null(ci_level) && !is.na(ci_level)) {
ci <- (1 + ci_level) / 2
} else {
ci <- 0.975
}
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# check whether predictions should be conditioned
# on random effects (grouping level) or not.
if (type == "fixed") {
ref <- NA
se_fit <- !identical(interval, "prediction")
} else {
# se.fit = TRUE currently doesn't work when re.form = NULL
ref <- NULL
se_fit <- FALSE
}
if (type %in% c("simulate", "simulate_random")) {
# simulate predictions
data_grid <- .do_simulate(model, terms, ci, type, interval = interval, ...)
} else {
# regular predictions
lme4_predictions <- suppressWarnings(stats::predict(
model,
newdata = data_grid,
type = "response",
re.form = ref,
allow.new.levels = TRUE,
se.fit = se_fit,
...
))
# do we have standard errors returned by 'predict()'?
if (is.list(lme4_predictions)) {
# if yes, copy predictions and standard errors
data_grid$predicted <- as.vector(lme4_predictions$fit)
standard_errors <- as.vector(lme4_predictions$se.fit)
} else {
# else, set standard_errors to NULL - we need to compute them from vcov
data_grid$predicted <- as.vector(lme4_predictions)
standard_errors <- NULL
}
# user wants standard errors?
if (se) {
# do we have regular standard errors, returned by 'predict()'?
if (is.null(standard_errors)) {
# if not, get standard errors from variance-covariance matrix
vcov_predictions <- .standard_error_predictions(
model = model,
prediction_data = data_grid,
typical = typical,
terms = terms,
type = type,
condition = condition,
interval = interval
)
# make sure own computed SE match length of predictions
if (.check_returned_se(vcov_predictions)) {
standard_errors <- vcov_predictions$se.fit
data_grid <- vcov_predictions$prediction_data
}
} else {
vcov_predictions <- NULL
}
# if we successfully retrieved standard errors, calculate CI
if (!is.null(standard_errors)) {
if (is.null(link_inverse)) {
# calculate CI for linear mixed models
data_grid$conf.low <- data_grid$predicted - tcrit * standard_errors
data_grid$conf.high <- data_grid$predicted + tcrit * standard_errors
} else {
# get link-function and back-transform fitted values
# to original scale, so we compute proper CI
lf <- insight::link_function(model)
# if we have bias-correction, we must also adjust the predictions
# this has not been done before, since we return predictions on
# the response scale directly, without any adjustment
if (isTRUE(bias_correction)) {
data_grid$predicted <- link_inverse(lf(data_grid$predicted))
}
# calculate CI for glmm
data_grid$conf.low <- link_inverse(lf(data_grid$predicted) - tcrit * standard_errors)
data_grid$conf.high <- link_inverse(lf(data_grid$predicted) + tcrit * standard_errors)
}
# copy standard errors
attr(data_grid, "std.error") <- standard_errors
if (!is.null(vcov_predictions)) {
attr(data_grid, "prediction.interval") <- attr(vcov_predictions, "prediction_interval")
}
} else {
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
} else {
data_grid$conf.low <- NA
data_grid$conf.high <- NA
}
}
data_grid
}
#' @export
get_predictions.lmerMod <- get_predictions.merMod
#' @export
get_predictions.glmerMod <- get_predictions.merMod
#' @export
get_predictions.nlmerMod <- get_predictions.merMod
#' @export
get_predictions.merModLmerTest <- get_predictions.merMod
#' @export
get_predictions.rlmerMod <- get_predictions.merMod
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.