R/tidybulk_utilities.R

Defines functions as_SummarizedExperiment ifelse_pipe

#' This is a generalisation of ifelse that accepts an object and returns an object
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom purrr as_mapper
#'
#' @param .x A tibble
#' @param .p A boolean
#' @param .f1 A function
#' @param .f2 A function
#'
#' @return A tibble
ifelse_pipe <- function(.x, .p, .f1, .f2 = NULL) {
    switch(
        sum(!.p, 1), 
        as_mapper(.f1)(.x),
        if (!is.null(.f2)) {
            as_mapper(.f2)(.x) 
        } else .x)
}

#' as_SummarizedExperiment
#'
#' @keywords internal
#' @noRd
#' 
#' @description `as_SummarizedExperiment()` creates a `SummarizedExperiment` 
#'   object from a `tbl` or `tidybulk` tbl formatted as 
#'   | <SAMPLE> | <TRANSCRIPT> | <COUNT> | <...> |
#'
#' @importFrom rlang enquo
#' @importFrom rlang quo_name
#' @importFrom rlang quo_squash
#' @importFrom utils data
#' @importFrom tidyr pivot_longer
#'
#' @param .data A tibble
#' @param .sample The name of the sample column
#' @param .transcript The name of the transcript/gene column
#' @param .abundance The name of the transcript/gene abundance column
#'
#' @return A `SummarizedExperiment` object
as_SummarizedExperiment <- function(.data,
    .sample = NULL,
    .transcript = NULL,
    .abundance = NULL) {
    
    # Fix NOTES
    . <- NULL
    assay <- NULL
    
    # Get column names
    .sample <- enquo(.sample)
    .transcript <- enquo(.transcript)
    .abundance <- enquo(.abundance)
    col_names <- get_sample_transcript_counts(.data, .sample, .transcript, .abundance)
    .sample <- col_names$.sample
    .transcript <- col_names$.transcript
    .abundance <- col_names$.abundance
    
    # If present get the scaled abundance
    .abundance_scaled <- 
        .data %>%
        ifelse_pipe(
            ".abundance_scaled" %in% ((.) %>% get_tt_columns() %>% names) &&
                # .data %>% get_tt_columns() %$% .abundance_scaled %>% is.null %>% not() &&
                quo_name((.) %>% get_tt_columns() %$% .abundance_scaled) %in% ((.) %>% colnames),
            ~ .x %>% get_tt_columns() %$% .abundance_scaled,
            ~ NULL
        )
    
    # Get which columns are sample wise and which are feature wise
    col_direction <- get_x_y_annotation_columns(.data,
        !!.sample,
        !!.transcript,
        !!.abundance,
        !!.abundance_scaled)
    sample_cols <- col_direction$horizontal_cols
    feature_cols <- col_direction$vertical_cols
    counts_cols <- col_direction$counts_cols
    
    colData <- 
        .data %>%
        select(!!.sample, any_of(sample_cols)) %>%
        distinct() %>%
        
        # Unite if multiple sample columns
        tidyr::unite(!!sample__$name, !!.sample, remove=FALSE, sep="___") |>
        
        arrange(!!sample__$symbol) %>% {
            S4Vectors::DataFrame(
                (.) %>% select(-!!sample__$symbol),
                row.names=(.) %>% pull(!!sample__$symbol)
            )
        }
    
    rowData <- 
        .data %>%
        select(!!.transcript, any_of(feature_cols)) %>%
        distinct() %>%
        
        # Unite if multiple sample columns
        tidyr::unite(!!feature__$name, !!.transcript, remove=FALSE, sep="___") |>
        
        arrange(!!feature__$symbol) %>% {
            S4Vectors::DataFrame(
                (.) %>% select(-!!feature__$symbol),
                row.names=(.) %>% pull(!!feature__$symbol)
            )
        }
    
    my_assays <- 
        .data %>%
        
        # Unite if multiple sample columns
        tidyr::unite(!!sample__$name, !!.sample, remove=FALSE, sep="___") |>
        
        # Unite if multiple sample columns
        tidyr::unite(!!feature__$name, !!.transcript, remove=FALSE, sep="___") |>
        
        select(!!sample__$symbol,
            !!feature__$symbol,
            !!.abundance,
            !!.abundance_scaled,
            any_of(counts_cols)) %>%
        distinct() %>%
        
        pivot_longer(
            cols=-c(!!feature__$symbol,!!sample__$symbol), 
            names_to="assay", values_to= ".a") %>%
        tidyr::nest(`data`=-`assay`) %>%
        mutate(`data`=`data` %>%  map(
            ~ .x %>%
                pivot_wider(names_from =  !!sample__$symbol, values_from = .a) %>%
                
                # arrange sample
                select(!!feature__$symbol, any_of(rownames(colData))) |>
                
                # Arrange symbol
                arrange(!!feature__$symbol) |>
                
                # Convert
                as_matrix(rownames=feature__$name)
        ))
    
    # Build the object
    SummarizedExperiment::SummarizedExperiment(
        assays=my_assays %>% pull(`data`) %>% stats::setNames(my_assays$assay),
        rowData=rowData,
        colData=colData
    )
}

#' Get column names either from user or from attributes
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom rlang quo_is_symbol
#' @importFrom rlang quo_is_symbolic
#'
#' @param .data A tibble
#' @param .sample A character name of the sample column
#' @param .transcript A character name of the transcript/gene column
#' @param .abundance A character name of the read count column
#'
#' @return A list of column enquo or error
get_sample_transcript_counts <- function(.data, .sample, .transcript, .abundance) {
    
    if (quo_is_symbolic(.sample)) .sample <- .sample
    else if (".sample" %in% (.data %>% get_tt_columns() %>% names()))
        .sample <- get_tt_columns(.data)$.sample
    else stop()
    
    if (quo_is_symbolic(.transcript)) .transcript <- .transcript
    else if (".transcript" %in% (.data %>% get_tt_columns() %>% names()))
        .transcript <- get_tt_columns(.data)$.transcript
    else stop()
    
    if (quo_is_symbolic(.abundance)) .abundance <- .abundance
    else if (".abundance" %in% (.data %>% get_tt_columns() %>% names()))
        .abundance <- get_tt_columns(.data)$.abundance
    else stop()
    
    list(.sample=.sample, .transcript=.transcript, .abundance=.abundance)
    
}

get_tt_columns <- function(.data) {
    
    # Fix NOTES
    tt_columns <- NULL
    
    if (.data %>% attr("internals") %>% is.list() &&
        "tt_columns" %in% names(.data %>% attr("internals"))) {
        .data %>% attr("internals") %$% tt_columns
    } else NULL
}

#' get_x_y_annotation_columns
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom magrittr equals
#' @importFrom rlang quo_is_symbol
#'
#' @param .data A `tbl` (with at least three columns for sample, feature and transcript abundance) or `SummarizedExperiment` (more convenient if abstracted to tibble with library(tidySummarizedExperiment))
#' @param .horizontal The name of the column horizontally presented in the heatmap
#' @param .vertical The name of the column vertically presented in the heatmap
#' @param .abundance The name of the transcript/gene abundance column
#' @param .abundance_scaled The name of the transcript/gene scaled abundance column
#'
#' @description This function recognise what are the sample-wise columns and transcrip-wise columns
#'
#' @return A list
get_x_y_annotation_columns <- function(.data, .horizontal, .vertical, .abundance, .abundance_scaled) {
    
    # Comply with CRAN NOTES
    . <- NULL
    
    # Make col names
    .horizontal <- enquo(.horizontal)
    .vertical <- enquo(.vertical)
    .abundance <- enquo(.abundance)
    .abundance_scaled <- enquo(.abundance_scaled)
    
    # x-annotation df
    n_x <- .data %>% select(!!.horizontal) |> distinct() |> nrow()
    n_y <- .data %>% select(!!.vertical) |> distinct() |> nrow()
    
    # Sample wise columns
    horizontal_cols <- 
        .data %>%
        select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%
        colnames %>%
        map(
            ~ {
              
              if(.data %>%
                 select(!!.horizontal, !!as.symbol(.x)) %>%
                 distinct() |>
                 nrow() %>%
                 equals(n_x)) .x
              else NULL
            }
                
        ) %>%
        
        # Drop NULL
        { (.)[lengths((.)) != 0]} %>%
        unlist
    
    # Transcript wise columns
    vertical_cols <- 
        .data %>%
        select(-!!.horizontal, -!!.vertical, -!!.abundance, -any_of(horizontal_cols)) %>%
        colnames %>%
        map(
            ~
                .x %>%
                ifelse_pipe(
                    .data %>%
                        select(!!.vertical, !!as.symbol(.x)) |>
                        distinct() |>
                        nrow() %>%
                        equals(n_y),
                    ~ .x,
                    ~ NULL
                )
        ) %>%
        
        # Drop NULL
        {(.)[lengths((.)) != 0]} %>%
        unlist
    
    # Counts wise columns, at the moment scaled counts is treated as special and not accounted for here
    counts_cols <- 
        .data %>%
        select(-!!.horizontal, -!!.vertical, -!!.abundance) %>%
        
        # Exclude horizontal
        ifelse_pipe(
            !is.null(horizontal_cols), 
            ~ .x %>% select(-any_of(horizontal_cols))) %>%
        
        # Exclude vertical
        ifelse_pipe(
            !is.null(vertical_cols), 
            ~ .x %>% select(-any_of(vertical_cols))) %>%
        
        # Exclude scaled counts if exist
        ifelse_pipe(
            .abundance_scaled %>% quo_is_symbol, 
            ~ .x %>% select(-!!.abundance_scaled)) %>%
        
        # Select colnames
        colnames %>%
        
        # select columns
        map(
            ~ .x %>%
                ifelse_pipe(
                    .data %>%
                        select(!!.vertical, !!.horizontal, !!as.symbol(.x)) %>%
                        distinct() |>
                        nrow() %>%
                        equals(n_x * n_y),
                    ~ .x,
                    ~ NULL
                )
        ) %>%
        
        # Drop NULL
        { (.)[lengths((.)) != 0]} %>%
        unlist
    
    list(horizontal_cols=horizontal_cols,  vertical_cols=vertical_cols, counts_cols=counts_cols )
}

#' Get matrix from tibble
#'
#' @keywords internal
#' @noRd
#'
#' @importFrom magrittr set_rownames
#' @importFrom rlang quo_is_null
#'
#' @param tbl A tibble
#' @param rownames The column name of the input tibble that will become the rownames of the output matrix
#' @param do_check A boolean
#'
#' @return A matrix
#'
#' @examples
#'
#' tibble(.feature = "CD3G", count=1) |> as_matrix(rownames=.feature)
as_matrix <- function(tbl, rownames=NULL, do_check=TRUE) {
    
    # Fix NOTEs
    variable <- NULL
    
    rownames <- enquo(rownames)
    tbl %>%
        
        # Through warning if data frame is not numerical beside the rownames column (if present)
        ifelse_pipe(
            do_check &&
                tbl %>%
                # If rownames defined eliminate it from the data frame
                ifelse_pipe(!quo_is_null(rownames), ~ .x[,-1], ~ .x) %>%
                dplyr::summarise_all(class) %>%
                tidyr::gather(variable, class) %>%
                pull(class) %>%
                unique() %>%
                `%in%`(c("numeric", "integer")) %>% not() %>% any(),
            ~ {
                warning("tidybulk says: there are NON-numerical columns, the matrix will NOT be numerical")
                .x
            }
        ) %>%
        as.data.frame() %>%
        
        # Deal with rownames column if present
        ifelse_pipe(
            !quo_is_null(rownames),
            ~ .x %>%
                magrittr::set_rownames(tbl %>% pull(!!rownames)) %>%
                select(-1)
        ) %>%
        
        # Convert to matrix
        as.matrix()
}
stemangiola/tidySCE documentation built on Sept. 22, 2024, 10:05 p.m.