#' @importFrom methods getMethod
setMethod(
f="show",
signature="SingleCellExperiment",
definition=function(object) {
opt <- getOption("restore_SingleCellExperiment_show", default=FALSE)
if (isTRUE(opt)) {
f <- getMethod(
f="show",
signature="SummarizedExperiment",
where=asNamespace(ns="SummarizedExperiment"))
f(object=object)
} else { print(object) }
}
)
setClass("tidySingleCellExperiment", contains="SingleCellExperiment")
#' @name join_features
#' @rdname join_features
#' @inherit ttservice::join_features
#' @aliases join_features,SingleCellExperiment-method
#'
#' @return A `tidySingleCellExperiment` object
#' containing information for the specified features.
#'
#' @examples
#' data(pbmc_small)
#' pbmc_small %>% join_features(
#' features=c("HLA-DRA", "LYZ"))
#'
#' @importFrom magrittr "%>%"
#' @importFrom dplyr contains
#' @importFrom dplyr everything
#' @importFrom ttservice join_features
#' @importFrom stringr str_c
#' @importFrom stringr str_subset
#' @export
setMethod("join_features", "SingleCellExperiment", function(.data,
features=NULL, all=FALSE, exclude_zeros=FALSE, shape="long", ...) {
# CRAN Note
.cell <- NULL
.feature <- NULL
# Shape is long
if (shape == "long") {
# Suppress generic data frame creation message produced by left_join
suppressMessages({
.data <-
.data %>%
left_join(
by=c_(.data)$name,
get_abundance_sc_long(
.data=.data,
features=features,
all=all,
exclude_zeros=exclude_zeros)) %>%
select(!!c_(.data)$symbol, .feature,
contains(".abundance"), everything())
})
# Provide data frame creation and abundance column message
if (any(class(.data) == "tbl_df")) {
abundance_columns <-
.data %>%
colnames() %>%
stringr::str_subset('.abundance_')
message(stringr::str_c("tidySingleCellExperiment says: join_features produces",
" duplicate cell names to accomadate the long data format. For this reason, a data",
" frame is returned for independent data analysis. Assay feature abundance is",
" appended as ",
stringr::str_flatten_comma(abundance_columns, last = " and "), "."
))
}
.data
# Shape if wide
} else {
.data %>%
left_join(
by=c_(.data)$name,
get_abundance_sc_wide(
.data=.data,
features=features,
all=all, ...))
}
})
#' @name tidy
#' @rdname tidy
#' @title tidy for `SingleCellExperiment`
#'
#' @param object A `SingleCellExperiment` object.
#' @return A `tidySingleCellExperiment` object.
#'
#' @examples
#' data(pbmc_small)
#' pbmc_small
#'
#' @export
tidy <- function(object) {
UseMethod("tidy", object)
}
#' @rdname tidy
#' @importFrom lifecycle deprecate_warn
#' @export
tidy.SingleCellExperiment <- function(object) {
# DEPRECATE
deprecate_warn(
when="1.1.1",
what="tidy()",
details="tidySingleCellExperiment says: tidy() is not needed anymore.")
return(object)
}
#' @name aggregate_cells
#' @rdname aggregate_cells
#' @inherit ttservice::aggregate_cells
#' @aliases aggregate_cells,SingleCellExperiment-method
#'
#' @examples
#' data(pbmc_small)
#' pbmc_small_pseudo_bulk <- pbmc_small |>
#' aggregate_cells(c(groups, ident), assays="counts")
#'
#' @importFrom rlang enquo
#' @importFrom magrittr "%>%"
#' @importFrom tibble enframe
#' @importFrom Matrix rowSums
#' @importFrom ttservice aggregate_cells
#' @importFrom SummarizedExperiment assays
#' @importFrom SummarizedExperiment assays<-
#' @importFrom SummarizedExperiment assayNames
#' @importFrom SummarizedExperiment rowData
#' @importFrom SummarizedExperiment rowData<-
#' @importFrom stringr str_remove
#' @importFrom dplyr group_split
#' @importFrom dplyr select
#' @importFrom tidyr pivot_wider
#' @importFrom tidyr unite
#' @importFrom dplyr mutate
#' @importFrom dplyr pull
#' @importFrom dplyr left_join
#' @importFrom dplyr unnest
#' @importFrom S4Vectors DataFrame
#' @importFrom methods as
#'
#'
#' @export
setMethod("aggregate_cells", "SingleCellExperiment", function(.data,
.sample=NULL, slot="data", assays=NULL,
aggregation_function=Matrix::rowSums,
...) {
# Fix NOTEs
feature <- NULL
.sample <- enquo(.sample)
# Subset only wanted assays
if (!is.null(assays)) {
assays(.data) <- assays(.data)[assays]
}
grouping_factor =
.data |>
colData() |>
as_tibble() |>
select(!!.sample) |>
suppressMessages() |>
unite("my_id_to_split_by___", !!.sample, sep = "___") |>
pull(my_id_to_split_by___) |>
as.factor()
list_count_cells = table(grouping_factor) |> as.list()
# New method
list_assays =
.data |>
assays() |>
as.list() |>
map(~ .x |> splitColData(grouping_factor)) |>
unlist(recursive=FALSE)
list_assays =
list_assays |>
map2(names(list_assays), ~ {
# Get counts
.x %>%
aggregation_function(na.rm=TRUE) %>%
enframe(
name =".feature",
value="x") %>% # sprintf("%s", .y)) %>%
# In case we don't have rownames
mutate(.feature=as.character(.feature))
}) |>
enframe(name = ".sample") |>
# Clean groups
mutate(assay_name = assayNames(!!.data) |> rep(each=length(levels(grouping_factor)))) |>
mutate(.sample = .sample |> str_remove(assay_name) |> str_remove("\\.")) |>
group_split(.sample) |>
map(~ .x |> unnest(value) |> pivot_wider(names_from = assay_name, values_from = x) ) |>
# Add cell count
map2(
list_count_cells,
~ .x |> mutate(.aggregated_cells = .y)
)
aggregated_sce =
do.call(rbind, list_assays) |>
as_SummarizedExperiment(
.sample=.sample,
.transcript=.feature,
.abundance=!!as.symbol(names(.data@assays))
)
new_col_data =
.data |>
colData() |>
as_tibble() |>
subset(!!.sample) |>
unite("my_id_to_split_by___", !!.sample, remove=FALSE, sep = "___")
new_col_data = new_col_data |> DataFrame(row.names = new_col_data$my_id_to_split_by___) |> _[,-1,drop=FALSE]
colData(aggregated_sce) =
colData(aggregated_sce) |>
cbind(
new_col_data[match(rownames(colData(aggregated_sce)), rownames(new_col_data)),,drop=FALSE]
)
rowData(aggregated_sce) = rowData(.data)
aggregated_sce
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.