#' @name rfCluster
#' @aliases 'rfCluster,Rscexv-method
#' @title rfCluster
#' @docType methods
#' @description This fucntion uses the RFclust.SGE to create fandomForest based unsupervised clusters on a subset of the data.
#' @description Default is on 200 cells using all (provided) genes with 500 forests and 500 trees per forest for 5 repetitions.
#' @description You are asked to give a k numer of expected clusters (better too many than too little), classifies the total
#' @description data using the 5 different unsupervised runs and all cluster ids from these runs are merged into the final cluster id.
#' @description This <summaryCol> will be part of the return objects samples table, together with a <usefulCol> where
#' @description all clusters with less than 10 cells have been merged into the 'gr. 0'.
#' @description The final results will be reported as new columns in the samples table containing the 'name'
#' @param x the single cells ngs object
#' @param email your email to use together with the SGE option
#' @param SGE whether to use the sun grid engine to calculate the rf grouping
#' @param rep how many repetitions for the random forest grouping should be run (default = 5)
#' @param slice how many processes should be started for each random forest clustering (default = 30)
#' @param bestColname the column name to store the results in
#' @param k the numer of expected clusters (better more than to view)
#' @param subset how many cells should be randomly selected for the unsupervised clustering (default = 200)
#' @param name if you want to run multiple RFclusterings on e.g. using different input genes you need to specify a name (default ='RFclust')
#' @param pics create a heatmap for each grouping that has been accessed (in the outpath folder; default = FALSE)
#' @param nforest the numer of forests to grow for each rep (defualt = 500)
#' @param ntree the numer of trees per forest (default = 500)
#' @param recover in case some problem has occured you could recover the objects from the saved files (default =F)
#' @return a Rscexv object including the results and storing the RF object in the usedObj list (bestColname)
#' @export
setGeneric('rfCluster',
function ( x, rep=5, SGE=F, email, k=16, slice=30, subset=200, pics=F ,nforest=500, ntree=500, name='RFclust', recover=F){
standardGeneric('rfCluster')
}
)
setMethod('rfCluster', signature = c ('Rscexv'),
definition = function ( x, rep=1, SGE=F, email, k=16, slice=4, subset=200, pics=F ,nforest=500, ntree=1000, name='RFclust', recover=F) {
summaryCol=paste( 'All_groups', name,sep='_')
rep=1 ## the doing multiple reps is broken!
usefulCol=paste ('Usefull_groups',name, sep='_')
n= paste(x@name, name,sep='_')
m <- max(k)
OPATH <- paste( x@outpath,"/",str_replace( x@name, '\\s', '_'), sep='')
opath = paste( OPATH,"/RFclust.mp",sep='' )
if ( ! dir.exists(OPATH)){
dir.create( OPATH )
}
processed = FALSE
single_res_col <- paste('RFgrouping',name)
if ( is.null(x@usedObj[['rfExpressionSets']])){
x@usedObj[['rfExpressionSets']] <- list()
x@usedObj[['rfObj']] <- list()
}
for ( i in 1:rep) {
tname = paste(n,i,sep='_')
if ( is.null(x@usedObj[['rfExpressionSets']][[tname]]) ){
## start the calculations!
if ( dir.exists(opath)){
if ( opath == '' ) {
stop( "Are you mad? Not giving me an tmp path to delete?")
}
if ( ! recover ){
system( paste('rm -f ',opath,"/*",tname,'*', sep='') )
}
}else {
dir.create( opath )
}
if ( recover ){
l <- function ( fn ) {
load( fn )
x
}
if ( file.exists(file.path( opath, paste(tname,'.RData',sep=''))) ){
loaded <- l( file.path( opath, paste(tname,'.RData',sep='')) )
x@usedObj[['rfObj']][[tname]] <- loaded
x@usedObj[['rfExpressionSets']][[ tname ]] <- remove.samples( x,
c(1:nrow(x@data))[is.na(match( make.names(rownames(x@data)), colnames(loaded@dat) )) ==T ]
)
## now add all analysis files into the object!
v <- NULL
x@usedObj[['rfObj']][[ tname ]]@RFfiles[[tname]] = NULL
for ( i in 1:slice ){
v =c(v, file.path(opath,paste( paste('runRFclust',tname,i,sep='_'),'RData',sep='.') ) )
}
x@usedObj[['rfObj']][[ tname ]]@RFfiles[[tname]] = v
}
print ( "Please re-run to load the results into the object." )
}
else {
total <- nrow(x@data)
if ( total-subset <= 2 ) {
stop( paste( 'You have only', total, 'samples in this dataset and request to draw random',subset, "samples, which leaves less than 2 cells to draw on random!") )
}
if ( is.null(x@usedObj[['rfExpressionSets']][[ tname ]]) ) {
x@usedObj[['rfExpressionSets']][[ tname ]] <- remove.samples( x, sample(c(1:total),total-subset) )
x@usedObj[['rfObj']][[ tname ]] <- RFclust.SGE ( dat=data.frame(t(x@usedObj[['rfExpressionSets']][[ tname ]]@data)), SGE=SGE, slices=slice, email=email, tmp.path=opath, name= tname )
}
#names(x@usedObj[['rfExpressionSets']]) [i] <- tname
#names(x@usedObj[['rfObj']]) [i] <- tname
x@usedObj[['rfObj']][[ tname ]] <- runRFclust ( x@usedObj[['rfObj']][[ tname ]] , nforest=nforest, ntree=ntree, name=tname )
if ( SGE){
print ( "You should wait some time now to let the calculation finish! check: system('qstat -f') -> re-run the function")
}
else {
print ( "You should wait some time now to let the calculation finish! -> re-run the function")
print ( "check: system( 'ps -Af | grep Rcmd | grep -v grep')")
}
}
}
else {
## read in the results
try ( x@usedObj[['rfObj']][[ tname ]] <- runRFclust (
x@usedObj[['rfObj']][[tname]] ,
nforest=nforest,
ntree=ntree,
name=tname
) )
if ( ! is.null(x@usedObj[['rfObj']][[ tname ]]@RFfiles[[tname]]) ){
stop( "please re-run this function later - the clustring process has not finished!")
}
for ( a in k ){
x@usedObj[["rfExpressionSets"]][[tname]]@samples <-
x@usedObj[["rfExpressionSets"]][[tname]]@samples[ ,
is.na(match ( colnames(x@usedObj[["rfExpressionSets"]][[tname]]@samples), paste('group n=',a) ))==T
]
}
groups <- createGroups( x@usedObj[['rfObj']][[tname]], k=k, name=tname )
x@usedObj[['rfExpressionSets']][[tname]]@samples <- cbind ( x@usedObj[['rfExpressionSets']][[tname]]@samples, groups[,3:(2+length(k))] )
le <- ncol(x@usedObj[['rfExpressionSets']][[tname]]@samples)
colnames(x@usedObj[['rfExpressionSets']][[tname]]@samples)[(le-length(k)+1):le] <- paste('group n=',k)
## create the required RF object
m <- max(k)
x@usedObj[['rfExpressionSets']][[tname]] <- bestGrouping( x@usedObj[['rfExpressionSets']][[tname]], group=paste('group n=', m), bestColname = paste('OptimalGrouping',m ,name) )
## the 'predictive RFobj group n=' object is created by the bestGrouping call
x@samples[, paste( single_res_col, i) ] <-
predict( x@usedObj[['rfExpressionSets']][[tname]]@usedObj[[paste( 'predictive RFobj group n=',m) ]], as.matrix(x@data) )
x@usedObj[['colorRange']][[paste( single_res_col, i)]] <- rainbow( length(levels( x@samples[, paste( single_res_col, i) ])))
if ( pics ){
fn <- paste(OPATH,'/heatmap_rfExpressionSets_',i,'.png', sep='')
png ( file=fn, width=800, height=1600 )
gg.heatmap.list( x, groupCol=paste( single_res_col , i) )
dev.off()
print ( paste('heatmap stored in', fn) )
}
print ( paste("Done with cluster",i) )
processed = TRUE
}
}
if ( processed ) {
print( 'If you want to re-run with more trees/forests you need to use a new "name" option' )
}
x
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.