#' @include utils.R
.earlyDETest <- function(models, knots, nPoints = 2 * nknots(models), global = TRUE,
pairwise = FALSE, l2fc = 0, eigenThresh = 1e-2){
if (is(models, "list")) {
sce <- FALSE
conditions <- NULL
condPresent <- FALSE
} else if (is(models, "SingleCellExperiment")) {
sce <- TRUE
condPresent <- suppressWarnings({
!is.null(SummarizedExperiment::colData(models)$tradeSeq$conditions)
})
if(condPresent){
conditions <- SummarizedExperiment::colData(models)$tradeSeq$conditions
nConditions <- nlevels(conditions)
} else {
conditions <- NULL
nConditions <- 1
}
}
# get predictor matrix for every lineage.
if (!sce) { # list output of fitGAM
modelTemp <- .getModelReference(models)
nCurves <- length(modelTemp$smooth)
nLineages <- nCurves
data <- modelTemp$model
} else if (sce) {
# SingleCellExperiment models
dm <- colData(models)$tradeSeq$dm # design matrix
X <- colData(models)$tradeSeq$X # linear predictor
knotPoints <- S4Vectors::metadata(models)$tradeSeq$knots # knot points
slingshotColData <- colData(models)$crv
pseudotime <- slingshotColData[,grep(x = colnames(slingshotColData),
pattern = "pseudotime")]
nCurves <- length(grep(x = colnames(dm), pattern = "l[1-9]"))
nLineages <- length(grep(x = colnames(dm), pattern = "t[1-9]"))
}
if (nLineages == 1){
stop("You cannot run this test with only one lineage.")
}
if (nLineages == 2 & pairwise == TRUE) {
message("Only two lineages; skipping pairwise comparison.")
pairwise <- FALSE
}
if (!sce) {
# get df
dfList <- .patternDf(dm = modelTemp$model,
nPoints = nPoints,
knots = knots,
knotPoints = modelTemp$smooth[[1]]$xp)
# get linear predictor
for (jj in seq_len(nCurves)) {
assign(paste0("X", jj), predict(modelTemp,
newdata = dfList[[jj]],
type = "lpmatrix"))
}
} else if (sce) {
# get df
dfList <- .patternDf(dm = dm,
nPoints = nPoints,
knots = knots,
knotPoints = knotPoints)
# construct pairwise contrast matrix
# get linear predictor
for (jj in seq_len(nLineages)) {
assign(paste0("X", jj), predictGAM(lpmatrix = X,
df = dfList[[jj]],
pseudotime = pseudotime,
conditions = conditions))
}
}
combs <- utils::combn(nLineages, m = 2)
for (jj in seq_len(ncol(combs))) {
curvesNow <- combs[, jj]
if (jj == 1) {
L <- get(paste0("X", curvesNow[1])) - get(paste0("X", curvesNow[2]))
} else if (jj > 1) {
L <- rbind(L, get(paste0("X", curvesNow[1])) -
get(paste0("X", curvesNow[2])))
}
}
# point x comparison y colnames
rownames(L) <- paste0("p", rep(seq_len(nPoints), ncol(combs)), "_", "c",
rep(seq_len(ncol(combs)), each = nPoints))
#transpose => one column is one contrast.
L <- t(L)
# do statistical test for every model through eigenvalue decomposition
if (global) {
# perform Wald test and calculate p-value
if (!sce) {
waldResOmnibus <- lapply(models, function(m){
if (is(m)[1] == "try-error") return(c(NA))
beta <- matrix(stats::coef(m), ncol = 1)
Sigma <- m$Vp
getEigenStatGAMFC(beta, Sigma, L, l2fc, eigenThresh)
})
} else if (sce) {
betaAll <- rowData(models)$tradeSeq$beta[[1]]
sigmaAll <- rowData(models)$tradeSeq$Sigma
waldResOmnibus <- lapply(seq_len(nrow(models)), function(ii){
beta <- t(betaAll[ii,])
Sigma <- sigmaAll[[ii]]
if (any(is.na(beta))) return(c(NA, NA))
getEigenStatGAMFC(beta, Sigma, L, l2fc, eigenThresh)
})
names(waldResOmnibus) <- rownames(models)
}
# tidy output
waldResults <- do.call(rbind, waldResOmnibus)
pval <- 1 - stats::pchisq(waldResults[, 1], df = waldResults[, 2])
waldResults <- cbind(waldResults, pval)
colnames(waldResults) <- c("waldStat", "df", "pvalue")
waldResultsOmnibus <- as.data.frame(waldResults)
}
#perform pairwise comparisons
if (pairwise) {
# no conditions present: loop over lineages for both !sce and sce
combs <- utils::combn(x = nLineages, m = 2)
for (jj in seq_len(ncol(combs))) {
curvesNow <- combs[,jj]
if (!sce) {
# get df
dfListPair <- .patternDfPairwise(dm = modelTemp$model,
curves = curvesNow,
nPoints = nPoints,
knots = knots,
knotPoints = modelTemp$smooth[[1]]$xp)
# get linear predictor
for (ii in seq_len(2)) { #always 2 curves we're comparing
assign(paste0("X", ii), predict(modelTemp,
newdata = dfListPair[[ii]],
type = "lpmatrix"))
}
L <- t(X1 - X2)
waldResPair <- lapply(models, function(m){
if (is(m)[1] == "try-error") return(c(NA))
beta <- matrix(stats::coef(m), ncol = 1)
Sigma <- m$Vp
if (any(is.na(beta))) return(c(NA, NA))
getEigenStatGAMFC(beta, Sigma, L, l2fc, eigenThresh)
})
} else if(sce){
# get df
dfList <- .patternDfPairwise(dm = dm,
curves = curvesNow,
nPoints = nPoints,
knots = knots,
knotPoints = knotPoints)
# get linear predictor
for (ii in seq_len(2)) { #pairwise => always 2 curves
assign(paste0("X", ii), predictGAM(lpmatrix = X,
df = dfList[[ii]],
pseudotime = pseudotime,
conditions = conditions))
}
L <- t(X1 - X2)
betaAll <- rowData(models)$tradeSeq$beta[[1]]
sigmaAll <- rowData(models)$tradeSeq$Sigma
waldResPair <- lapply(seq_len(nrow(models)), function(ii){
beta <- t(betaAll[ii,])
Sigma <- sigmaAll[[ii]]
if (any(is.na(beta))) return(c(NA, NA))
getEigenStatGAM(beta, Sigma, L)
})
}
# tidy output
waldResults <- do.call(rbind, waldResPair)
pval <- 1 - stats::pchisq(waldResults[, 1], df = waldResults[, 2])
waldResults <- cbind(waldResults, pval)
colnames(waldResults) <- c(
paste0("waldStat_", paste(curvesNow, collapse = "vs")),
paste0("df_", paste(curvesNow, collapse = "vs")),
paste0("pvalue_", paste(curvesNow, collapse = "vs")))
waldResults <- as.data.frame(waldResults)
if (jj == 1) waldResAllPair <- waldResults
if (jj > 1) waldResAllPair <- cbind(waldResAllPair, waldResults)
}
} # end of if(pairwise)
## get fold changes for output
if (!sce) {
fcAll <- lapply(models, function(m){
betam <- stats::coef(m)
fcAll <- .getFoldChanges(betam, L)
return(fcAll)
})
fcMedian <- matrixStats::rowMedians(abs(do.call(rbind, fcAll)))
} else if (sce) {
betaAll <- as.matrix(rowData(models)$tradeSeq$beta[[1]])
fcAll <- apply(betaAll,1,function(betam){
fcAll <- .getFoldChanges(betam, L)
})
fcMedian <- matrix(matrixStats::rowMedians(abs(t(fcAll))), ncol = 1)
}
# Return output
if (global == TRUE & pairwise == FALSE) return(cbind(waldResultsOmnibus, fcMedian))
if (global == FALSE & pairwise == TRUE) return(cbind(waldResAllPair, fcMedian))
if (global == TRUE & pairwise == TRUE) {
waldAll <- cbind(waldResultsOmnibus, waldResAllPair, fcMedian)
return(waldAll)
}
}
#' @title Differential expression patterns in a specific region.
#' @description Perform test of differential expression patterns between lineages
#' in a user-defined region based on the knots of the smoothers.
#'
#' @param models The fitted GAMs, typically the output from
#' \code{\link{fitGAM}}.
#' @param knots A vector of length 2 specifying the knots at the start and end
#' of the region of interest.
#' @param nPoints The number of points to be compared between lineages.
#' Defaults to twice the number of knots
#' @param global If TRUE, test for all pairwise comparisons simultaneously.
#' @param pairwise If TRUE, test for all pairwise comparisons independently.
#' @param l2fc The log2 fold change threshold to test against. Note, that
#' this will affect both the global test and the pairwise comparisons.
#' @param eigenThresh Eigenvalue threshold for inverting the variance-covariance matrix
#' of the coefficients to use for calculating the Wald test statistics. Lower values
#' are more lenient to adding more information but also decrease computational stability.
#' This argument should in general not be changed by the user but is provided
#' for back-compatability. Set to \code{1e-8} to reproduce results of older
#' version of `tradeSeq`.
#' @importFrom magrittr %>%
#' @examples
#' data(gamList, package = "tradeSeq")
#' earlyDETest(gamList, knots = c(1, 2), global = TRUE, pairwise = TRUE)
#' @return A matrix with the wald statistic, the number of df and the p-value
#' associated with each gene for all the tests performed. Also, for each possible
#' pairwise comparision, the observed log fold changes. If the testing
#' procedure was unsuccessful, the procedure will return NA test statistics,
#' fold changes and p-values.
#' @details To help the user in choosing which knots to use when defining the
#' branching, the \code{\link{plotGeneCount}} function has a models optional
#' parameter that can be used to visualize where the knots are.
#' @rdname earlyDETest
#' @export
#' @import SingleCellExperiment
#' @importFrom methods is
setMethod(f = "earlyDETest",
signature = c(models = "SingleCellExperiment"),
definition = function(models,
global = TRUE,
pairwise = FALSE,
knots = NULL,
nPoints = 2 * nknots(models),
l2fc = 0,
eigenThresh = 1e-2){
res <- .earlyDETest(models = models,
global = global,
pairwise = pairwise,
knots = knots,
nPoints = nPoints,
l2fc = l2fc,
eigenThresh = eigenThresh)
return(res)
}
)
#' @rdname earlyDETest
#' @export
setMethod(f = "earlyDETest",
signature = c(models = "list"),
definition = function(models,
global = TRUE,
pairwise = FALSE,
knots = NULL,
nPoints = 2 * nknots(models),
l2fc = 0,
eigenThresh = 1e-2){
res <- .earlyDETest(models = models,
global = global,
pairwise = pairwise,
knots = knots,
nPoints = nPoints,
l2fc = l2fc,
eigenThresh = eigenThresh)
return(res)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.