R/pcrelate.R

Defines functions pcrelateSampBlock calcISAFBeta correctK0 correctK2 correctKin .estListToDT .pcrelateCalcRatio .pcrCalcKinNone .pcrCalcNone .pcrCalcIBDVar .pcrCalcKinVar .pcrCalcVar .pcrCalcIBDOvr .pcrCalcKinOvr .pcrCalcOvr .muBoundaryFilt .muBoundaryTrunc .estISAF .matListCombine .pcrelateVarBlock .calcISAFBeta .calcISAFBetaPCProd .createPCMatrix samplesGdsOrder .pcrelateChecks .pcrelate

Documented in calcISAFBeta correctK0 correctK2 correctKin pcrelateSampBlock samplesGdsOrder

setGeneric("pcrelate", function(gdsobj, ...) standardGeneric("pcrelate"))

setMethod("pcrelate",
          "GenotypeIterator",
          function(gdsobj,
                   pcs,
                   scale = c('overall', 'variant', 'none'),
                   ibd.probs = TRUE,
                   sample.include = NULL,
                   training.set = NULL,
                   sample.block.size = 5000,
                   maf.thresh = 0.01,
                   maf.bound.method = c('filter', 'truncate'),
                   small.samp.correct = TRUE,
                   BPPARAM = bpparam(),
                   verbose = TRUE) {
              .pcrelate(gdsobj,
                        pcs = pcs,
                        scale = scale,
                        ibd.probs = ibd.probs,
                        sample.include = sample.include,
                        training.set = training.set,
                        sample.block.size = sample.block.size,
                        maf.thresh = maf.thresh,
                        maf.bound.method = maf.bound.method,
                        small.samp.correct = small.samp.correct,
                        BPPARAM = BPPARAM,
                        verbose = verbose)
          })

setMethod("pcrelate",
          "SeqVarIterator",
          function(gdsobj,
                   pcs,
                   scale = c('overall', 'variant', 'none'),
                   ibd.probs = TRUE,
                   sample.include = NULL,
                   training.set = NULL,
                   sample.block.size = 5000,
                   maf.thresh = 0.01,
                   maf.bound.method = c('filter', 'truncate'),
                   small.samp.correct = TRUE,
                   BPPARAM = bpparam(),
                   verbose = TRUE) {
              filt <- seqGetFilter(gdsobj)
              out <- .pcrelate(gdsobj,
                               pcs = pcs,
                               scale = scale,
                               ibd.probs = ibd.probs,
                               sample.include = sample.include,
                               training.set = training.set,
                               sample.block.size = sample.block.size,
                               maf.thresh = maf.thresh,
                               maf.bound.method = maf.bound.method,
                               small.samp.correct = small.samp.correct,
                               BPPARAM = BPPARAM,
                               verbose = verbose)
              seqSetFilter(gdsobj,
                           sample.sel=filt$sample.sel,
                           variant.sel=filt$variant.sel,
                           verbose=FALSE)
              out
          })

.pcrelate <- function(gdsobj,
                      pcs,
                      scale = c('overall', 'variant', 'none'),
                      ibd.probs = TRUE,
                      sample.include = NULL,
                      training.set = NULL,
                      sample.block.size = 5000,
                      maf.thresh = 0.01,
                      maf.bound.method = c('filter', 'truncate'),
                      small.samp.correct = TRUE,
                      BPPARAM = bpparam(),
                      verbose = TRUE){

    # checks
    scale <- match.arg(scale)
    maf.bound.method <- match.arg(maf.bound.method)
    sample.include <- samplesGdsOrder(gdsobj, sample.include)
    .pcrelateChecks(pcs = pcs, scale = scale, ibd.probs = ibd.probs, sample.include = sample.include, training.set = training.set,
                    maf.thresh = maf.thresh)

    if(verbose) message('Using ', bpnworkers(BPPARAM), ' CPU cores')

    # number of sample blocks
    nsampblock <- ceiling(length(sample.include)/sample.block.size)

    # check for small sample correction
    if(small.samp.correct){
        small.samp.correct <- (nsampblock == 1) & (scale != 'none')
        if(!small.samp.correct) {
            warning('small.samp.correct can only be used when all samples are analyzed in one block and `scale != none`')
        }
    }

    # list of samples in each block
    if(nsampblock > 1){
        samp.blocks <- unname(split(sample.include, cut(1:length(sample.include), nsampblock)))
    }else{
        samp.blocks <- list(sample.include)
    }

    if(nsampblock == 1){
        if(verbose) message(length(sample.include), ' samples to be included in the analysis...')

        # create matrix of PCs
        V <- .createPCMatrix(pcs = pcs, sample.include = sample.include)

        # matrix product of V
        VVtVi <- .calcISAFBetaPCProd(V = V, training.set = training.set, verbose = verbose)

        snp.blocks <- .snpBlocks(gdsobj)
        nsnpblock <- length(snp.blocks)
        if(verbose) {
            message('Running PC-Relate analysis for ', length(sample.include), ' samples using ',
                    length(unlist(snp.blocks)), ' SNPs in ', nsnpblock, ' blocks...')
        }

        # iterator function to return genotype blocks
        k <- 1
        Giter <- function() {
            if (k > nsnpblock) return(NULL)
            G <- .readGeno(gdsobj, sample.include, snp.index = snp.blocks[[k]])
            k <<- k + 1
            return(G)
        }

        # for each snp block
        #matList <- foreach(k = 1:nsnpblock, .combine = .matListCombine, .inorder = FALSE, .multicombine = FALSE) %do% {
        snpBlock <- function(G, ...) {
            #if(verbose) message('    Running block ', k, '...')
            # read genotype data for the block
            #G <- .readGeno(gdsobj, sample.include, snp.index = snp.blocks[[k]])

            # calculate ISAF betas
            beta <- .calcISAFBeta(G = G, VVtVi = VVtVi)

            # calculate PC-Relate estimates
            .pcrelateVarBlock(G = G, beta = beta, V = V, idx = 1:nrow(V), jdx = 1:nrow(V), scale = scale,
                              ibd.probs = ibd.probs, maf.thresh = maf.thresh, maf.bound.method = maf.bound.method)
        }

        matList <- bpiterate(Giter, snpBlock, REDUCE = .matListCombine, reduce.in.order = FALSE, BPPARAM = BPPARAM)

        # take ratios to compute final estimates
        estList <- .pcrelateCalcRatio(matList = matList, scale = scale, ibd.probs = ibd.probs)
        rm(matList)

        # cast to data.tables
        kinSelf <- data.table(ID = rownames(estList$kin), f = 2*diag(estList$kin) - 1, nsnp = diag(estList$nsnp))
        kinBtwn <- .estListToDT(estList, drop.lower = TRUE)
        rm(estList)


    }else if(nsampblock > 1){
        if(verbose) {
            message(length(sample.include), ' samples to be included in the analysis, split into ', nsampblock, ' blocks...')
        }

        # calculate betas for individual specific allele frequencies
        beta <- calcISAFBeta(gdsobj = gdsobj, pcs = pcs, sample.include = sample.include,
                             training.set = training.set, verbose = verbose, BPPARAM = BPPARAM)
        ### beta is a matrix of variants x PCs; needs to be saved, not sure of the best format or the best way to split this up ###

        # compute estimates for current (pair of) sample block(s)
        ### this is where we would parallelize with multiple jobs ###
        kinSelf <- NULL
        kinBtwn <- NULL
        for(i in 1:nsampblock){
            for(j in i:nsampblock){
                if(verbose) message('Running PC-Relate analysis for sample block pair (', i, ',', j, ')')
                # compute estimates for the (pair of) sample block(s)
                tmp <- pcrelateSampBlock(gdsobj = gdsobj, pcs = pcs, betaobj = beta,
                                         sample.include.block1 = samp.blocks[[i]],
                                         sample.include.block2 = samp.blocks[[j]],
                                         scale = scale, ibd.probs = ibd.probs,
                                         maf.thresh = maf.thresh,
                                         maf.bound.method = maf.bound.method,
                                         BPPARAM = BPPARAM, verbose = verbose)

                # update results with this (pair of) sample block(s)
                if(i == j) kinSelf <- rbind(kinSelf, tmp$kinSelf)
                kinBtwn <- rbind(kinBtwn, tmp$kinBtwn)
            }
        }
    }

    ### post processing after putting all samples together

    # order samples
    setkeyv(kinSelf, 'ID')
    setkeyv(kinBtwn, c('ID1', 'ID2'))

    # correct kinship - small sample
    if(small.samp.correct){
        if(verbose) message('Performing Small Sample Correction...')
        out <- correctKin(kinBtwn = kinBtwn, kinSelf = kinSelf, pcs = pcs,
                          sample.include = sample.include)
        kinBtwn <- out$kinBtwn
        kinSelf <- out$kinSelf
    }

    # correct k2 - HW departure and small sample
    if(ibd.probs) kinBtwn <- correctK2(kinBtwn = kinBtwn, kinSelf = kinSelf,
                                       small.samp.correct = small.samp.correct, pcs = pcs,
                                       sample.include = sample.include)

    # use alternate k0 estimator for non-1st degree relatives
    if(ibd.probs) kinBtwn <- correctK0(kinBtwn = kinBtwn)

    # return output
    out <- list(kinBtwn = as.data.frame(kinBtwn), kinSelf = as.data.frame(kinSelf))
    class(out) <- "pcrelate"
    return(out)
}




.pcrelateChecks <- function(pcs, scale, ibd.probs, sample.include, training.set, maf.thresh){
    # check parameters
    if(scale == 'none' & ibd.probs) stop('`ibd.probs` must be FALSE when `scale` == none')
    if(maf.thresh < 0 | maf.thresh > 0.5) stop('maf.thresh must be in [0,0.5]')
    # check training.set
    if(!is.null(training.set) & !all(training.set %in% sample.include)) {
        stop('All samples in training.set must be in sample.include')
    }
    # check pcs
    if(!is.matrix(pcs) | is.null(rownames(pcs))) {
        stop('pcs should be a matrix of PCs with rownames set to sample.ids')
    }
    if(!all(sample.include %in% rownames(pcs))) {
        stop('All samples in sample.include must be in pcs')
    }
}


### get sample ids in same order as gdsobj
samplesGdsOrder <- function(gdsobj, sample.include) {
    sample.id <- .readSampleId(gdsobj)
    if (!is.null(sample.include)) {
        sample.id <- intersect(sample.id, sample.include)
    }
    return(as.character(sample.id))
}


### function to match samples and create PC matrix
.createPCMatrix <- function(pcs, sample.include){
    # subset and re-order pcs if needed
    V <- pcs[match(sample.include, rownames(pcs)), , drop = FALSE]
    # append intercept
    V <- cbind(rep(1, nrow(V)), V)
    return(V)
}


# function to get
.calcISAFBetaPCProd <- function(V, training.set, verbose = TRUE){
    if(!is.null(training.set)){
        idx <- rownames(V) %in% training.set
        VVtVi <- tcrossprod(V[idx,], chol2inv(chol(crossprod(V[idx,]))))
        if(verbose) {
            message('Betas for ', ncol(V) - 1, ' PC(s) will be calculated using ',
                    sum(idx), ' samples in training.set...')
        }
    }else{
        idx <- NULL
        VVtVi <- tcrossprod(V, chol2inv(chol(crossprod(V))))
        if(verbose) {
            message('Betas for ', ncol(V) - 1, ' PC(s) will be calculated using all ',
                    nrow(V), ' samples in sample.include...')
        }
    }
    return(list(val = VVtVi, idx = idx))
}

# function to do actual calculation of betas
.calcISAFBeta <- function(G, VVtVi){
    # impute missing genotype values
    G <- .meanImpute(G, freq=0.5*colMeans(G, na.rm=TRUE))

    # calculate beta
    if(is.null(VVtVi$idx)){
        if(!identical(rownames(G), rownames(VVtVi$val))) {
            stop('sample order in genotypes and pcs do not match')
        }
        beta <- crossprod(G, VVtVi$val)
    }else{
        if(!identical(rownames(G)[VVtVi$idx], rownames(VVtVi$val))) {
            stop('sample order in genotypes and pcs do not match')
        }
        beta <- crossprod(G[VVtVi$idx, ], VVtVi$val)
    }
    return(beta)
}



### this function does the pcrelate estimation for a variant block
.pcrelateVarBlock <- function(G, beta, V, idx, jdx, scale, ibd.probs, maf.thresh, maf.bound.method){

    # make sure order of G, beta, and V all line up
    if(!identical(colnames(G), rownames(beta))) stop('G and beta do not match')
    if(!identical(rownames(G), rownames(V))) stop('G and V do not match')

    # estimate individual specific allele frequencies
    mu <- .estISAF(beta = beta, V = V, bound.thresh = maf.thresh, bound.method = maf.bound.method)

    # compute values for estimates
    if(scale == 'overall'){
        matList <- .pcrCalcOvr(G = G, mu = mu, idx = idx, jdx = jdx, ibd.probs = ibd.probs)
    }else if(scale == 'variant'){
        matList <- .pcrCalcVar(G = G, mu = mu, idx = idx, jdx = jdx, ibd.probs = ibd.probs)
    }else if(scale == 'none'){
        matList <- .pcrCalcNone(G = G, mu = mu, idx = idx, jdx = jdx)
    }

    return(matList)
}

.matListCombine <- function(...){
    mapply(FUN = "+", ..., SIMPLIFY = FALSE)
}


### these functions are for estimating individual specific allele frequencies
.estISAF <- function(beta, V, bound.thresh, bound.method){
    # get ISAF estimates (i.e. 0.5*fitted values)
    mu <- 0.5*tcrossprod(V, beta)
    # fix boundary cases
    if(bound.method == 'truncate'){
        mu <- apply(mu, 2, .muBoundaryTrunc, thresh = bound.thresh)
    }else if(bound.method == 'filter'){
        mu <- apply(mu, 2, .muBoundaryFilt, thresh = bound.thresh)
    }else{
        stop('bound.method must be one of `truncate` or `filter`')
    }
    return(mu)
}

# function to truncate boundary issues with ISAFs
.muBoundaryTrunc <- function(x, thresh){
    x[x < thresh] <- thresh
    x[x > (1 - thresh)] <- (1 - thresh)
    return(x)
}

# function to filter boundary issues with ISAFs
.muBoundaryFilt <- function(x, thresh){
    x[x < thresh] <- NA
    x[x > (1 - thresh)] <- NA
    return(x)
}



### all of the functions below are used for computing kinship and ibd estimates ###
.pcrCalcOvr <- function(G, mu, ibd.probs, idx, jdx){
    # compute mu(1 - mu)
    muqu <- mu*(1 - mu)

    # compute number of observed snps by pair
    nonmiss <- !(is.na(G) | is.na(mu))
    nsnp <- tcrossprod(nonmiss[idx,,drop=F], nonmiss[jdx,,drop=F])

    # index of missing values
    filt.idx <- which(!nonmiss)

    # compute kinship values
    kinList <- .pcrCalcKinOvr(G, mu, muqu, filt.idx, idx, jdx)

    if(ibd.probs){
        # compute ibd values
        ibdList <- .pcrCalcIBDOvr(G, mu, muqu, nonmiss, filt.idx, idx, jdx)

        return(list(kinNum = kinList$kinNum,
                    kinDen = kinList$kinDen,
                    k0Num = ibdList$k0Num,
                    k0Den = ibdList$k0Den,
                    k2Num = ibdList$k2Num,
                    k2Den = ibdList$k2Den,
                    nsnp = nsnp))

    }else{
        return(list(kinNum = kinList$kinNum,
                    kinDen = kinList$kinDen,
                    nsnp = nsnp))
    }
}

.pcrCalcKinOvr <- function(G, mu, muqu, filt.idx, idx, jdx){
    # residuals
    R <- G - 2*mu

    # set missing values to 0 (i.e. no contribution from that variant)
    R[filt.idx] <- 0
    muqu[filt.idx] <- 0

    # numerator (crossprod of residuals)
    kinNum <- tcrossprod(R[idx,,drop=F], R[jdx,,drop=F])
    # denominator
    kinDen <- tcrossprod(sqrt(muqu[idx,,drop=F]), sqrt(muqu[jdx,,drop=F]))

    return(list(kinNum = kinNum, kinDen = kinDen))
}

.pcrCalcIBDOvr <- function(G, mu, muqu, nonmiss, filt.idx, idx, jdx){
    # opposite allele frequency
    qu <- 1 - mu

    # indicator matrices of homozygotes
    Iaa <- G == 0 & nonmiss
    IAA <- G == 2 & nonmiss

    # dominance coded genotype matrix
    Gd <- mu
    Gd[G == 1 & nonmiss] <- 0
    Gd[IAA] <- qu[IAA]
    Gd <- Gd - muqu

    # set missing values to 0 (i.e. no contribution from that variant)
    Iaa[filt.idx] <- 0
    IAA[filt.idx] <- 0
    Gd[filt.idx] <- 0
    mu[filt.idx] <- 0
    qu[filt.idx] <- 0
    muqu[filt.idx] <- 0

    # k0
    k0Num <- tcrossprod(IAA[idx,,drop=F], Iaa[jdx,,drop=F]) + tcrossprod(Iaa[idx,,drop=F], IAA[jdx,,drop=F])
    k0Den <- tcrossprod(mu[idx,,drop=F]^2, qu[jdx,,drop=F]^2) + tcrossprod(qu[idx,,drop=F]^2, mu[jdx,,drop=F]^2)

    # k2
    k2Num <- tcrossprod(Gd[idx,,drop=F], Gd[jdx,,drop=F])
    k2Den <- tcrossprod(muqu[idx,,drop=F], muqu[jdx,,drop=F])

    return(list(k0Num = k0Num, k0Den = k0Den, k2Num = k2Num, k2Den = k2Den))
}


.pcrCalcVar <- function(G, mu, ibd.probs, idx, jdx){
    # compute mu(1 - mu)
    muqu <- mu*(1 - mu)

    # compute number of observed snps by pair
    nonmiss <- !(is.na(G) | is.na(mu))
    nsnp <- tcrossprod(nonmiss[idx,,drop=F], nonmiss[jdx,,drop=F])

    # index of missing values
    filt.idx <- which(!nonmiss)

    # compute kinship values
    kinNum <- .pcrCalcKinVar(G, mu, muqu, filt.idx, idx, jdx)

    if(ibd.probs){
        # compute ibd values
        ibdList <- .pcrCalcIBDVar(G, mu, muqu, nonmiss, filt.idx, idx, jdx)

        return(list(kinNum = kinNum,
                    k0Num = ibdList$k0Num,
                    k2Num = ibdList$k2Num,
                    nsnp = nsnp))

    }else{
        return(list(kinNum = kinNum, nsnp = nsnp))
    }
}

.pcrCalcKinVar <- function(G, mu, muqu, filt.idx, idx, jdx){
    # scaled residuals
    R <- (G - 2*mu)/sqrt(muqu)

    # set missing values to 0 (i.e. no contribution from that variant)
    R[filt.idx] <- 0

    # numerator (crossprod of scaled residuals)
    kinNum <- tcrossprod(R[idx,,drop=F], R[jdx,,drop=F])

    return(kinNum)
}

.pcrCalcIBDVar <- function(G, mu, muqu, nonmiss, filt.idx, idx, jdx){
    # opposite allele frequency
    qu <- 1 - mu

    # indicator matrices of homozygotes
    Iaa <- G == 0 & nonmiss
    IAA <- G == 2 & nonmiss

    # dominance coded genotype matrix
    Gd <- mu
    Gd[G == 1 & nonmiss] <- 0
    Gd[IAA] <- qu[IAA]

    # scale
    Iaa <- 0.5*Iaa/qu^2 # factor of 1/2 for IAA*Iaa comes in from splitting up the two terms AA,aa vs aa,AA
    IAA <- IAA/mu^2
    Gd <- Gd/muqu - 1

    # set missing values to 0 (i.e. no contribution from that variant)
    Iaa[filt.idx] <- 0
    IAA[filt.idx] <- 0
    Gd[filt.idx] <- 0

    # k0
    k0Num <- tcrossprod(IAA[idx,,drop=F], Iaa[jdx,,drop=F]) + tcrossprod(Iaa[idx,,drop=F], IAA[jdx,,drop=F])

    # k2
    k2Num <- tcrossprod(Gd[idx,,drop=F], Gd[jdx,,drop=F])

    return(list(k0Num = k0Num, k2Num = k2Num))
}


.pcrCalcNone <- function(G, mu, idx, jdx){
    # compute number of observed snps by pair
    nonmiss <- !(is.na(G) | is.na(mu))
    nsnp <- tcrossprod(nonmiss[idx,,drop=F], nonmiss[jdx,,drop=F])

    # index of missing values
    filt.idx <- which(!nonmiss)
    rm(nonmiss)

    # compute kinship values
    kin <- .pcrCalcKinNone(G, mu, filt.idx, idx, jdx)
    return(list(kin = kin, nsnp = nsnp))
}

.pcrCalcKinNone <- function(G, mu, filt.idx, idx, jdx){
    # residuals
    R <- G - 2*mu

    # set missing values to 0 (i.e. no contribution from that variant)
    R[filt.idx] <- 0

    # crossprod of scaled residuals
    kin <- tcrossprod(R[idx,,drop=F], R[jdx,,drop=F])

    return(kin)
}


### functions for post processing on variant block level
.pcrelateCalcRatio <- function(matList, scale, ibd.probs){
    # compute final estimates
    if(scale == 'overall'){
        kin <- matList$kinNum/(4*matList$kinDen)
        if(ibd.probs){
            k2 <- matList$k2Num/matList$k2Den
            k0 <- matList$k0Num/matList$k0Den
            return(list(kin = kin, k0 = k0, k2 = k2, nsnp = matList$nsnp))
        }else{
            return(list(kin = kin, nsnp = matList$nsnp))
        }

    }else{
        kin <- matList$kin/(4*matList$nsnp)
        if(ibd.probs){
            k2 <- matList$k2/matList$nsnp
            k0 <- matList$k0/matList$nsnp
            return(list(kin = kin, k0 = k0, k2 = k2, nsnp = matList$nsnp))
        }else{
            return(list(kin = kin, nsnp = matList$nsnp))
        }
    }
}


### functions for post processing on sample block level
.estListToDT <- function(x, drop.lower){
    estDT <- lapply(x, meltMatrix, drop.lower = drop.lower, drop.diag = drop.lower)
    for(k in 1:length(estDT)){
        setnames(estDT[[k]], 'value', names(estDT)[k])
    }
    # merge those data.tables into one data.table
    estDT <- Reduce(merge, estDT)
    return(estDT)
}


### functions for final processing
correctKin <- function(kinBtwn, kinSelf, pcs, sample.include = NULL){
    # keep R CMD check from warning about undefined global variables
    f <- ID1 <- ID2 <- kin <- newval <- value <- NULL

    # temporary data.table to store values
    tmp <- kinSelf[, c('ID', 'f')]
    setnames(tmp, c('ID','f'), c('ID1', 'kin'))
    tmp[, ID2 := ID1]
    tmp <- rbind(kinBtwn[, c('ID1', 'ID2', 'kin')], tmp)
    setnames(tmp, 'kin', 'newval')
    setkeyv(tmp, c('ID1', 'ID2'))

    # get the PC matrix
    V <- .createPCMatrix(pcs = pcs, sample.include = sample.include)

    # make adjustment for each PC
    for(k in 2:ncol(V)){
        Acov <- tcrossprod(V[,k])
        rownames(Acov) <- rownames(V)
        colnames(Acov) <- rownames(V)
        Avec <- meltMatrix(Acov, drop.lower = TRUE, drop.diag = FALSE)
        tmp <- Avec[tmp, on = c('ID1', 'ID2')]
        coef <- lm(formula = as.formula(newval ~ value), data = tmp[newval < 2^(-11/2)])$coef
        tmp[, newval := newval - coef[1] - coef[2]*value]
        tmp[, value := NULL]
    }

    # merge back into kinBtwn
    kinBtwn <- tmp[kinBtwn, on = c('ID1', 'ID2')]
    kinBtwn[, kin := newval][, newval := NULL]

    # merge back into kinSelf
    tmp <- tmp[ID1 == ID2][, ID2 := NULL]
    setnames(tmp, 'ID1', 'ID')
    kinSelf <- tmp[kinSelf, on = 'ID']
    kinSelf[, f := newval][, newval := NULL]

    return(list(kinBtwn = kinBtwn, kinSelf = kinSelf))
}

correctK2 <- function(kinBtwn, kinSelf, pcs, sample.include = NULL, small.samp.correct = TRUE){
    # keep R CMD check from warning about undefined global variables
    f.1 <- f.2 <- kin <- k2 <- newval <- value <- NULL

    # correct k2 for HW departure
    kinBtwn <- merge(kinBtwn, kinSelf[, c('ID', 'f')], by.x = 'ID2', by.y = 'ID')
    setnames(kinBtwn, 'f', 'f.2')
    kinBtwn <- merge(kinBtwn, kinSelf[, c('ID', 'f')], by.x = 'ID1', by.y = 'ID')
    setnames(kinBtwn, 'f', 'f.1')
    kinBtwn[, k2 := k2 - f.1*f.2][, `:=`(f.1 = NULL, f.2 = NULL)]

    if(small.samp.correct){
        # temporary data.table to store values
        tmp <- kinBtwn[, c('ID1', 'ID2', 'kin', 'k2')]
        setnames(tmp, 'k2', 'newval')
        setkeyv(tmp, c('ID1', 'ID2'))

        # get the PC matrix
        V <- .createPCMatrix(pcs = pcs, sample.include = sample.include)

        # make adjustment for each PC
        for(k in 2:ncol(V)){
            Acov <- tcrossprod(V[,k])
            rownames(Acov) <- rownames(V)
            colnames(Acov) <- rownames(V)
            Avec <- meltMatrix(Acov, drop.lower = TRUE, drop.diag = FALSE)
            tmp <- Avec[tmp, on = c('ID1', 'ID2')]
            coef <- lm(formula = as.formula(newval ~ value + I(value^2)), data = tmp[kin < 2^(-11/2)])$coef
            tmp[, newval := newval - coef[1] - coef[2]*value - coef[3]*value^2]
            tmp[, value := NULL]
        }

        # make adjustment for kinship
        coef <- lm(formula = as.formula(newval ~ kin), data = tmp[newval < 2^(-9/2)])$coef
        tmp[, newval := newval - coef[1] - coef[2]*kin]
        tmp[, kin := NULL]

        # merge back into kinBtwn
        kinBtwn <- tmp[kinBtwn, on = c('ID1', 'ID2')]
        kinBtwn[!is.na(newval), k2 := newval][, newval := NULL]
    }

    return(kinBtwn)
}

correctK0 <- function(kinBtwn){
    # keep R CMD check from warning about undefined global variables
    kin <- k0 <- k2 <- NULL

    # use alternate k0 estimator for non-1st degree relatives
    kinBtwn[kin < 2^(-5/2), k0 := 1 - 4*kin + k2]

    return(kinBtwn)
}


setGeneric("meltMatrix", function(x, ...) standardGeneric("meltMatrix"))

setMethod("meltMatrix",
          "matrix",
          function(x, drop.lower = FALSE, drop.diag = FALSE){
            ID1 <- ID2 <- NULL
            if(drop.lower){
                x[lower.tri(x, diag = drop.diag)] <- NA
            }
            x <- as.data.table(reshape2::melt(x, varnames = c('ID1', 'ID2'), na.rm = TRUE, as.is = TRUE))
            x <- x[,`:=`(ID1 = as.character(ID1), ID2 = as.character(ID2))]
            setkeyv(x, c('ID1', 'ID2'))
          })

setMethod("meltMatrix",
          "Matrix",
          function(x, drop.lower = FALSE, drop.diag = FALSE){
            if(drop.lower){
                x[lower.tri(x, diag = drop.diag)] <- NA
            }

            # this modeled after reshape2:::melt.matrix
            labels <- as.data.table(expand.grid(dimnames(x), KEEP.OUT.ATTRS = FALSE, stringsAsFactors = FALSE))
            setnames(labels, c('Var1', 'Var2'), c('ID1', 'ID2'))

            missing <- is.na(as.vector(x))
            x <- cbind(labels[!missing,], data.table(value = x[!missing]))
            setkeyv(x, c('ID1', 'ID2'))
          })





### exported function for computing PC betas for individual specific allele frequency calculations ###
calcISAFBeta <- function(gdsobj, pcs, sample.include, training.set = NULL, BPPARAM = bpparam(), verbose = TRUE){
    # checks - add some

    if(verbose) message('Using ', bpnworkers(BPPARAM), ' CPU cores')

    # create matrix of PCs
    V <- .createPCMatrix(pcs = pcs, sample.include = sample.include)

    # matrix product of V
    VVtVi <- .calcISAFBetaPCProd(V = V, training.set = training.set, verbose = verbose)

    snp.blocks <- .snpBlocks(gdsobj)
    nsnpblock <- length(snp.blocks)
    if(verbose) {
        message('Calculating Indivdiual-Specific Allele Frequency betas for ',
                length(unlist(snp.blocks)), ' SNPs in ', nsnpblock, ' blocks...')
    }

    # iterator function to return genotype blocks
    k <- 1
    Giter <- function() {
        if (k > nsnpblock) return(NULL)
        G <- .readGeno(gdsobj, sample.include, snp.index = snp.blocks[[k]])
        k <<- k + 1
        return(G)
    }

    # beta <- foreach(k = 1:nsnpblock, .combine = rbind, .inorder = FALSE, .multicombine = TRUE) %do% {
    # snpBlock <- function(G, ...) {
    #     if(verbose) message('    Running block ', k, '...')
    #     # read genotype data for the block
    #     G <- .readGeno(gdsobj, sample.include, snp.index = snp.blocks[[k]])
    #
    #     # calculate ISAF betas
    #     .calcISAFBeta(G = G, VVtVi = VVtVi)
    # }
    ### rather than returning and rbinding here, we may want to be writing the output to something

    beta <- bpiterate(Giter, .calcISAFBeta, VVtVi = VVtVi, REDUCE = rbind, reduce.in.order = FALSE, BPPARAM = BPPARAM)

    return(beta)
}


### exported function that does the pcrelate estimation for a (pair of) sample block(s)
pcrelateSampBlock <- function(gdsobj, betaobj, pcs, sample.include.block1, sample.include.block2,
                              scale = c('overall', 'variant', 'none'), ibd.probs = TRUE,
                              maf.thresh = 0.01, maf.bound.method = c('filter', 'truncate'),
                              BPPARAM = bpparam(), verbose = TRUE){

    scale <- match.arg(scale)
    maf.bound.method <- match.arg(maf.bound.method)

    if(verbose) message('Using ', bpnworkers(BPPARAM), ' CPU cores')

    # create (joint) PC matrix and indices
    sample.include <- unique(c(sample.include.block1, sample.include.block2))
    V <- .createPCMatrix(pcs = pcs, sample.include = sample.include)
    idx <- which(rownames(V) %in% sample.include.block1)
    jdx <- which(rownames(V) %in% sample.include.block2)
    oneblock <- setequal(idx, jdx)
    ### slight inefficiency above because we create V for samples in block1 for each block2 when we don't have to if we are running serially;
    ### but this seems more straightforward to parallelize

    # iterator function to return genotype blocks
    k <- 1
    Giter <- function() {
        if (k > nsnpblock) return(NULL)
        G <- .readGeno(gdsobj, sample.include, snp.index = snp.blocks[[k]])
        k <<- k + 1
        return(G)
    }

    snp.blocks <- .snpBlocks(gdsobj)
    nsnpblock <- length(snp.blocks)

    if(verbose) {
        message('Running PC-Relate analysis using ', length(unlist(snp.blocks)), ' SNPs in ', nsnpblock, ' blocks...')
    }
    # compute estimates for each variant block; sum along the way
    #matList <- foreach(k = 1:nsnpblock, .combine = .matListCombine, .inorder = FALSE, .multicombine = FALSE) %do% {
    snpBlock <- function(G, ...) {
        #if(verbose) message('    Running block ', k, '...')
        # read genotype data for the block
        #G <- .readGeno(gdsobj, sample.include, snp.index = snp.blocks[[k]])

        # load betas for the current block of variants
        beta.block <- betaobj[colnames(G), , drop = FALSE]
        ### this line of code will probably be different if we save the betas; need to load correct betas

        # calculate PC-Relate estimates
        .pcrelateVarBlock(G = G, beta = beta.block, V = V, idx = idx, jdx = jdx, scale = scale,
                          ibd.probs = ibd.probs, maf.thresh = maf.thresh, maf.bound.method = maf.bound.method)
    }

    matList <- bpiterate(Giter, snpBlock, REDUCE = .matListCombine, reduce.in.order = FALSE, BPPARAM = BPPARAM)

    # take ratios to compute final estimates
    estList <- .pcrelateCalcRatio(matList = matList, scale = scale, ibd.probs = ibd.probs)
    rm(matList)

    # cast to data.tables
    if(oneblock){
        # self table
        kinSelf <- data.table(ID = rownames(estList$kin), f = 2*diag(estList$kin) - 1, nsnp = diag(estList$nsnp))
        setkeyv(kinSelf, 'ID')
        # between samples table
        kinBtwn <- .estListToDT(estList, drop.lower = TRUE)
    }else{
        kinSelf <- NULL
        # between samples table
        kinBtwn <- .estListToDT(estList, drop.lower = FALSE)
    }
    rm(estList)
    setkeyv(kinBtwn, c('ID1', 'ID2'))

    return(list(kinSelf = kinSelf, kinBtwn = kinBtwn))
}
smgogarten/GENESIS documentation built on Jan. 16, 2025, 7:35 p.m.