R/admixMap.R

Defines functions admixMap

Documented in admixMap

admixMap <- function(admixDataList,
                     null.model,
                     male.diploid=TRUE, genome.build=c("hg19", "hg38"),
                     BPPARAM=bpparam(), verbose=TRUE){

    # if admixDataList is one file, convert to a list
    if(!is.list(admixDataList)){
        admixDataList <- list(admixDataList)
    }

    # how many ancestry components to be tested
    v <- length(admixDataList)

    # if admixDataList doesn't have names, assign them
    if(is.null(names(admixDataList))){
        names(admixDataList) <- paste("Anc",1:v,sep="")
    }

    # get sample index
    if (is(admixDataList[[1]], "GenotypeIterator")) {
        sample.index <- lapply(admixDataList, .sampleIndexNullModel, null.model)
        if (!.listIdentical(sample.index)) stop("sample IDs do not match for all elements of admixDataList")
        sample.index <- sample.index[[1]]
    } else if (is(admixDataList[[1]], "SeqVarIterator")) {
        sample.index <- lapply(admixDataList, .setFilterNullModel, null.model, verbose=verbose)
        if (!.listIdentical(sample.index)) stop("sample IDs do not match for all elements of admixDataList")
        sample.index <- sample.index[[1]]
    } else {
        stop("admixDataList must contain GenotypeIterator or SeqVarIterator objects")
    }
    n.samp <- length(sample.index)
    
    # get sex for calculating allele freq
    sex <- validateSex(admixDataList[[1]])[sample.index]

    # get variant information
    var.info <- lapply(admixDataList, variantInfo, alleles=FALSE)
    if (!.listIdentical(var.info)) stop("variants do not match for all elements of admixDataList")


    # set up results matrix
    # add in frequency of each ancestry at the SNP
    nv <- c("n.obs")
    if(v > 1){
        for(i in 1:v){
            nv <- append(nv, paste(names(admixDataList)[i],c(".freq",".Est",".SE"), sep=""))
        }
        nv <- append(nv, c("Joint.Stat", "Joint.pval"))
    }else{
        nv <- append(nv, c("freq", "Est", "SE", "Stat", "pval"))
    }

    # n.iter <- length(variantFilter(admixDataList[[1]]))
    # set.messages <- ceiling(n.iter / 100) # max messages = 100
                  
    if(verbose) message('Using ', bpnworkers(BPPARAM), ' CPU cores')
    
    b <- 1
    ITER <- function() {
        iterate <- TRUE
        if (b > 1) {
            for (i in 1:v) {
                if (is(admixDataList[[i]], "GenotypeIterator")) {
                    iterate <- GWASTools::iterateFilter(admixDataList[[i]])
                } else {
                    iterate <- SeqVarTools::iterateFilter(admixDataList[[i]], verbose=FALSE)
                }
            }
        }
        b <<- b + 1
        if (!iterate) {
            return(NULL)
        }
        
        var.info <- variantInfo(admixDataList[[1]], alleles=FALSE)
        n.var <- nrow(var.info)

        # get local ancestry for the block
        local <- array(NA, dim=c(n.samp,n.var,v)) # indices: scan, snp, ancestry
        for(i in 1:v){
            if (is(admixDataList[[1]], "GenotypeIterator")) {
                local[,,i] <- getGenotypeSelection(admixDataList[[i]], scan=sample.index, order="selection", transpose=TRUE, use.names=FALSE, drop=FALSE)
            } else {
                local[,,i] <- refDosage(admixDataList[[i]], use.names=FALSE)[sample.index,,drop=FALSE]
            }
        }
        if (any(is.na(local))) warning("missing values in local ancestry will produce NA output for this block")
        
        # chromosome indicator is needed to calculate allele frequency for sex chroms
        chr <- chromWithPAR(admixDataList[[i]], genome.build=genome.build)
        
        return(list(var.info=var.info, local=local, chr=chr))
    }
    
    FUN <- function(x) {
        var.info <- x$var.info
        local <- x$local
        chr <- x$chr
        rm(x)
        
        n.var <- nrow(var.info)
        res <- matrix(NA, nrow=n.var, ncol=length(nv), dimnames=list(NULL, nv))
    
        # ancestral frequency
        # matrix:  rows are SNPs, columns are ancestries
        freq <- matrix(NA, nrow=n.var, ncol=v)
        for(i in 1:v){
            freq[,i] <- .alleleFreq(local[,,i], chr, sex, male.diploid=male.diploid)$freq
        }
        col <- if (v > 1) paste(names(admixDataList),".freq", sep="") else "freq"
        res[,col] <- freq

        # sample size
        res[, "n.obs"] <- n.samp

        k <- ncol(null.model$model.matrix)
        Ytilde <- null.model$fit$resid.cholesky
        sY2 <- sum(Ytilde^2)

        # perform regressions
        if(v == 1){
            local <- local[,,1]
            Gtilde <- calcGtilde(null.model, local)
            GPG <- colSums(Gtilde^2) # vector of G^T P G (for each SNP)
            # filter monomorphic SNPs
            GPG[freq[,1] == 0 | freq[,1] == 1] <- NA
            beta <- as.vector(crossprod(Gtilde,Ytilde)/GPG)
            Vbeta <- (sY2/GPG - beta^2)/(n.samp - k - 1) # RSS/GPG
            Stat <- beta^2/Vbeta

            res[,"Est"] <- beta
            res[,"SE"] <- sqrt(Vbeta)
            res[,"Stat"] <- Stat
            res[,"pval"] <- .pchisq_filter_extreme(Stat, df=1, lower.tail=FALSE)

        }else{
            Joint.Stat <- rep(NA, ncol(local))
            Est <- matrix(NA, nrow=ncol(local), ncol=v)
            SE <- matrix(NA, nrow=ncol(local), ncol=v)
            for(g in 1:ncol(local)){
                if(identical(local[,g,], local[,(g-1),])){
                    Joint.Stat[g] <- Joint.Stat[g-1]
                    Est[g,] <- Est[g-1,]
                    SE[g,] <- SE[g-1,]
                    next
                }
                # filter monomorphic or missing SNPs
                if(any(freq[g,]==1) || sum(freq[g,]==0)){ next }
                Gtilde <- calcGtilde(null.model, local[,g,])
                GPG <- crossprod(Gtilde)
                GPGinv <- tryCatch( chol2inv(chol(GPG)), error=function(e){TRUE})
                # check that the error function above hasn't been called (which returns TRUE instead of the inverse matrix)
                if(is.logical(GPGinv)){ next }
                GPY <- crossprod(Gtilde, Ytilde)
                betas <- crossprod(GPGinv, GPY)
                RSS <- as.numeric((sY2 - crossprod(GPY,betas))/(n.samp - k - v))
                Vbetas <- GPGinv*RSS

                Est[g,] <- as.vector(betas)
                SE[g,] <- as.vector(sqrt(diag(Vbetas)))
                Joint.Stat[g] <- tryCatch( crossprod(betas,crossprod(GPG,betas))/RSS, error=function(e){NA})
            } # g loop

            # collect results
            for(i in 1:v){
                res[,paste(names(admixDataList)[i],".Est", sep="")] <- Est[,i]
                res[,paste(names(admixDataList)[i],".SE", sep="")] <- SE[,i]
            }
            res[,"Joint.Stat"] <- Joint.Stat
            res[,"Joint.pval"] <- .pchisq_filter_extreme(Joint.Stat, df=v, lower.tail=FALSE)
        } # else

        # results data frame
        res <- cbind(var.info, res)

        # if (verbose & n.iter > 1 & b %% set.messages == 0) {
        #     message(paste("Iteration", b , "of", n.iter, "completed"))
        # }
        return(res)
    }
    
    res.list <- bpiterate(ITER, FUN, BPPARAM=BPPARAM)
    .stopOnError(res.list)
    as.data.frame(rbindlist(res.list))
}
smgogarten/GENESIS documentation built on Jan. 16, 2025, 7:35 p.m.