##' est_power
##'
##' A function to estitamete the power for differential expression analysis of RNA-seq data.
##'
##'
##'
##' @param n Numer of samples.
##' @param alpha alpha level.
##' @return Estimate power
##' @inheritParams sample_size
##' @export
##' @examples n<-63;rho<-2;lambda0<-5;phi0<-0.5;f<-0.01
##' est_power(n=n, rho=rho, lambda0=lambda0, phi0=phi0,f=f)
est_power<-function(n, w=1, k=1,rho=2, lambda0=5, phi0=1,alpha=0.05,f,m=20000,m1=200){
if (!missing(f)) {#FDR power
power_fdr_100<-est_power_root_fdr(power=1,n=n, w=w,k=k, rho=rho, lambda0=lambda0, phi0=phi0,m=m,m1=m1,fdr=f)
if (power_fdr_100<0.01) {
return(0)
} else {
power_fdr<-uniroot.integer(f=est_power_root_fdr,interval=c(1,100),n=n, w=w,k=k, rho=rho, lambda0=lambda0, phi0=phi0,m=m,m1=m1,fdr=f)
return((power_fdr$root-1)/100)
}
} else {#alpha power
power<-est_power_root(n=n, w=w,k=k, rho=rho, lambda0=lambda0, phi0=phi0, alpha=alpha)
#beacuse est_power_root is returning (power-(1-beta)), which can be used in uniroot.integer for fdr based power estimation.
#If using it directly for alpha based power, need +0.8 to get correct power as default value for beta is 0.2.
return(power+0.8)
}
}
est_power_root_fdr<-function(power,n, w,k, rho, lambda0, phi0,fdr,m,m1,...) {
alpha_star<-m1 * power/100*fdr/((m-m1)*(1-fdr))
# cat(paste0(alpha_star,"\n"))
beta<-1-power/100
est_power_root(n=n, w=w,k=k, rho=rho, lambda0=lambda0, phi0=phi0, alpha=alpha_star,beta=beta,...)
}
est_power_root<-function(n,k=1, w=1, rho=2.0, lambda0=5, phi0=1, beta=0.2, alpha=0.05, bigCount=900,error=0.001,returnDetail=FALSE){
mu0<-lambda0
mu1<-mu0*(rho*w)
phi1<-phi0
q0_u<-qnbinom(1-error, size=n/phi0, mu=n*mu0)
q0_l<-qnbinom(error, size=n/phi0, mu=n*mu0)
q1_u<-qnbinom(1-error, size=k*n/phi1, mu=k*n*mu1)
q1_l<-qnbinom(error, size=k*n/phi1, mu=k*n*mu1)
if (min(q0_u,q0_l,q1_u,q1_l)>=bigCount) { #beta approx, I am not very sure if we need to *n here to determine if bigCount
method<-"beta"
} else { #NB
method<-"nb"
}
temp<-pCutoffMatrix(x1=q1_l:q1_u,x0=q0_l:q0_u, n=n, phi=phi0, w=w,k=k,alpha=alpha,method=method,bigCount=bigCount)
a<-0
if (returnDetail) {
b<-matrix(1,nrow=length(q1_l:q1_u),ncol=length(q0_l:q0_u))
X1<-temp$X1
Y1<-temp$Y1
X2<-temp$X2
Y2<-temp$Y2
}
temp1<-pnbinom(q1_u,mu=(k*n*mu1), size=k*n/phi1)
temp2<-pnbinom(q0_u,mu=(n*mu0), size=n/phi0)
if (!is.na(temp$Y1[1])) {
a<-sum((temp1-pnbinom(temp$Y1-1,mu=(k*n*mu1), size=k*n/phi1))*dnbinom(temp$X1,mu=(n*mu0), size=n/phi0))
}
if (!is.na(temp$Y2[1])) {
a<-a+sum((temp2-pnbinom(temp$X2-1,mu=(n*mu0), size=n/phi0))*dnbinom(temp$Y2,mu=(k*n*mu1), size=k*n/phi1))
}
if (returnDetail) {
if (!is.na(Y1[1])) {
for (i in 1:length(Y1)) {
b[(Y1[i]-q1_l+1):(q1_u-q1_l+1),(X1[i]-q0_l+1)]<-alpha
}
}
if (!is.na(Y2[1])) {
for (i in 1:length(Y2)) {
b[(Y2[i]-q1_l+1),(X2[i]-q0_l+1):(q0_u-q0_l+1)]<-alpha
}
}
colnames(b)<-q0_l:q0_u
row.names(b)<-q1_l:q1_u
#beacuse est_power_root is used in uniroot.integer for fdr based power estimation, in which difference between estimated power and desired power is used to get a number most close to 0
#So it need to return (power-(1-beta)), where 1-beta is desired power
return(list(matrix=b,X1=X1[X1!=q0_l & X1!=q0_u & Y1!=q1_l & Y1!=q1_u],X2=X2[X2!=q0_l & X2!=q0_u & Y2!=q1_l & Y2!=q1_u],Y1=Y1[X1!=q0_l & X1!=q0_u & Y1!=q1_l & Y1!=q1_u],Y2=Y2[X2!=q0_l & X2!=q0_u & Y2!=q1_l & Y2!=q1_u],
power=a,powerForUnirootFdr=a-(1-beta)))
} else {
return(a-(1-beta))
}
}
pCutoffMatrix<-function(x1,x0, n, phi, w=1,k=1,alpha=0.05,method=c("nb","beta"),bigCount=900) {
method<-match.arg(method)
alphaOneSide<-alpha/2
y<-(min(x1)+min(x0)):(max(x1)+max(x0))
if (method=="nb") {
largeCountInd<-y>=(bigCount*4)
if (any(largeCountInd)) { #Large count*4, beta approciate
x0Max<-vector( "numeric",length=length(y))
n1<-n
n2<-k*n
mu <- y[largeCountInd]/(n1+n2)
alpha1 <- n1*mu/(1+phi*mu)
alpha2 <- n2/n1*alpha1
d<-qbeta(alphaOneSide,alpha1,alpha2)
x0Max[largeCountInd]<-as.integer(d*y[largeCountInd]-0.5)
#Others nb
if (!all(largeCountInd)) {
a2Fx<-generateA2FxR(max(y[!largeCountInd]),n,phi)
yy<-lapply(y[!largeCountInd],function(x) nb_pvalue_store(x, n=n, phi=phi, w=w,k=k,a2Fx=a2Fx))
x0Max[!largeCountInd]<-sapply(yy,function(x) cumsumBorder(x,alphaOneSide))
}
} else {
a2Fx<-generateA2FxR(max(y),n,phi)
yy<-lapply(y,function(x) nb_pvalue_store(x, n=n, phi=phi, w=w,k=k,a2Fx=a2Fx))
x0Max<-sapply(yy,function(x) cumsumBorder(x,alphaOneSide))
}
} else { #beta app
n1<-n
n2<-k*n
mu <- y/(n1+n2)
alpha1 <- n1*mu/(1+phi*mu)
alpha2 <- n2/n1*alpha1
#d=(x0Cutoff+0.5)/y
d<-qbeta(alphaOneSide,alpha1,alpha2)
x0Max<-as.integer(d*y-0.5)
}
temp<-x0Max>=min(x0)
x0Select<-x0Max[temp]
x1Select<-(y-x0Max)[temp]
temp<-x1Select<min(x1)
x0Select[temp]<-x1Select[temp]+x0Select[temp]-min(x1)
x1Select[temp]<-min(x1)
temp<-x0Select>max(x0)
x1Select[temp]<-x1Select[temp]+x0Select[temp]-max(x0)
x0Select[temp]<-max(x0)
temp<-x1Select<=max(x1)
x1Select<-x1Select[temp]
x0Select<-x0Select[temp]
temp<-c(1,1+which(diff(x0Select)!=0))
X1<-x0Select[temp]
Y1<-x1Select[temp]
if (method=="nb") {
if (any(largeCountInd)) { #Large count*4, beta approciate
x0Min<-vector( "numeric",length=length(y))
#d=(x0Cutoff-0.5)/y
d<-qbeta(alphaOneSide,alpha1,alpha2,lower.tail=FALSE)
x0Min[largeCountInd]<-as.integer(d*y[largeCountInd]+0.5)+1
if (!all(largeCountInd)) {
x0Min[!largeCountInd]<-y[!largeCountInd]-sapply(yy,function(x) cumsumBorder(rev(x),alphaOneSide))
}
} else {
x0Min<-y-sapply(yy,function(x) cumsumBorder(rev(x),alphaOneSide*sum(x)))
}
} else { #beta app
#d=(x0Cutoff-0.5)/y
d<-qbeta(alphaOneSide,alpha1,alpha2,lower.tail=FALSE)
x0Min<-as.integer(d*y+0.5)+1
}
temp<-x0Min<=max(x0)
x0Select<-x0Min[temp]
x1Select<-(y-x0Min)[temp]
temp<-x0Select<=min(x0)
x1Select[temp]<-x1Select[temp]+x0Select[temp]-min(x0)
x0Select[temp]<-min(x0)
temp<-x1Select>=min(x1)
x1Select<-x1Select[temp]
x0Select<-x0Select[temp]
temp<-x1Select>=max(x1)
x0Select[temp]<-x1Select[temp]+x0Select[temp]-max(x1)
x1Select[temp]<-max(x1)
temp<-c(1,1+which(diff(x1Select)!=0))
X2<-x0Select[temp]
Y2<-x1Select[temp]
return(list(X1=X1,Y1=Y1,X2=X2,Y2=Y2))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.