R/utils.R

Defines functions get_geom_text require_pkgs abort_if_not to_ASICS to_ChemoSpec progress_bar_end progress_bar_update progress_bar_new show_progress_bar tibble_lists_columns_to_vector_columns list_of_lists_to_tibble

Documented in to_ASICS to_ChemoSpec

# This script has utilities not related to NMR.

#' Convert a list of lists to a tibble
#'
#' Each element of \code{ls} corresponds to 1 row of the output tibble. This
#' element is a list, and each subelement corresponds to a column of the
#' output tibble.
#'
#' One nice thing about this function is that if there are elements with missing
#' columns, those values will be filled with \code{NA}.
#'
#' The other nice thing of this function is that if any of those elements is
#' itself a list or a vector, it will be nicely preserved inside the tibble cell.
#'
#' @param ls A list
#' @return A tibble
#' @keywords internal
#' @noRd
#' @examples
#' data_as_list <- list(
#'     list(Gender = "Male", Height = 170),
#'     list(Gender = "Female", Height = 160),
#'     list(Gender = "Male", Weight = 80)
#' )
#' mydata <- list_of_lists_to_tibble(data_as_list)
#'
list_of_lists_to_tibble <- function(ls) {
    # Get all the column names per sample:
    all_columns_per_sample <- lapply(ls, function(x) {
        names(x)
    })
    # all_columns_per_sample
    #    list(c("Gender", "Height), c("Gender", "Height"), c("Gender", "Weight"))
    # Concatenate and get a unique list of all column names:
    all_names <- unique(do.call(c, all_columns_per_sample))
    # all_names
    #    c("Gender", "Height", "Weight")

    # For each sample:
    ls_ordered <- lapply(
        ls,
        function(sampl) {
            # If the sample is NULL, then return a list of
            # missing values with the column names:
            if (is.null(sampl)) {
                sampl <- as.list(rep(NA, length(all_names)))
                names(sampl) <-
                    all_names
                return(sampl)
            }
            # Otherwise reorder list elements so they match the names
            sampl <-
                sampl[all_names]
            # If the sample does not have all the columns,
            # the missing columns are named `NA` with value NULL.
            # Make sure the names are properly set:
            names(sampl) <-
                all_names
            # Finally replace NULL values in the list with NA:
            sampl <-
                lapply(sampl, function(value) {
                    if (is.null(value)) {
                        return(NA)
                    } else {
                        return(value)
                    }
                })
            # Return the sample:
            return(sampl)
        }
    )

    data <- tibble::as_tibble(do.call(rbind, ls_ordered))
    # dataframe with lists on each column. Let's convert them if possible
    data <- tibble_lists_columns_to_vector_columns(data)
    return(data)
}

#' Simplifies a tibble with lists columns of length 1 of the same type
#'
#'
#' @param data a tibble
#' @return a tibble with converted columns
#' @keywords internal
#' @noRd
tibble_lists_columns_to_vector_columns <- function(data) {
    # based on http://stackoverflow.com/questions/40046603/tibble-with-list-columns-convert-to-array-if-possible/

    ### Step 1: Find which columns have to be converted:

    # 1.1 Convert only columns of type "list"
    to_simplify_cols <- which(
        purrr::map_lgl(data, function(x) "list" %in% class(x))
    )

    # 1.1b If there are none, return:
    if (length(to_simplify_cols) == 0) {
        # Restore original colnames
        return(data)
    }

    # 1.2 Convert only list columns that have all elements of length 1:

    # Max length of the lists columns:
    length_column_elements <- apply(
        data[, to_simplify_cols], 2,
        function(x) {
            max(vapply(x, length, numeric(1)))
        }
    )
    # We just simplify list columns of length 1
    to_simplify_cols <-
        to_simplify_cols[length_column_elements == 1]

    # 1.2.b No list columns can be simplified:
    if (length(to_simplify_cols) == 0) {
        return(data)
    }

    # 1.3 Convert only list columns that have all elements of length 1 and belong
    #         to the same class (allowing for NA values)

    # For each list column of length 1:
    types <- apply(
        data[, to_simplify_cols], 2,
        function(data_column) {
            # For each value in this column get the class, missing values are given
            # their own class because they are always allowed
            value_classes <-
                lapply(
                    data_column,
                    function(value) {
                        if (is.na(value)) {
                            "__NAVALUE__"
                        } else {
                            class(value)
                        }
                    }
                )
            # Remove repeated types in the column:
            value_classes <-
                unique(value_classes)
            # Remove the missing value placeholders:
            idx <- vapply(
                value_classes,
                function(value_class) {
                    !identical(value_class, "__NAVALUE__")
                },
                logical(1)
            )
            value_classes <-
                value_classes[idx]
            if (length(value_classes) == 0) {
                value_classes <- list("logical")
            }
            value_classes
        }
    )
    # types is a list of the same length than to_simplify_cols.
    # types[[1]] is a list corresponding to the column to_simplify_cols[1]
    # types[[1]] contains the classes of the column to_simplify_cols[1]
    # We simplify only columns with just one class, so we check which types have length 1

    number_of_types <- vapply(types, length, numeric(1))
    # filter columns of a single class
    number_of_types <- number_of_types[number_of_types == 1]
    # Keep those columns only
    to_simplify_cols <- to_simplify_cols[names(number_of_types)]

    # No list columns can be simplified:
    if (length(to_simplify_cols) == 0) {
        return(data)
    }

    # Get all column names:
    data_col_names <- colnames(data)
    # Get the column names of the columns to simplify
    to_simplify <- data_col_names[to_simplify_cols]

    # Do the conversion
    data2 <-
        tidyr::unnest(data, cols = dplyr::all_of(to_simplify))
    data2 <-
        data2[, colnames(data)] # Preserve original column order
    return(data2)
}


#' Determine if there is a need to show a progress bar
#' @noRd
#' @param ... Conditions that must be all fullfilled
#' @return A logical
show_progress_bar <- function(...) {
    all(...) && interactive() && is.null(getOption("knitr.in.progress"))
}

progress_bar_new <- function(name, total) {
    have_pkg_progressr <- requireNamespace("progressr", quietly = TRUE)
    if (have_pkg_progressr) {
        e <- rlang::caller_env()
        return(progressr::progressor(steps = total, message = name, envir = e))
    }
    # fallback txtprogressbar:
    return(utils::txtProgressBar(min = 0, max = total, style = 3))
}

progress_bar_update <- function(pb) {
    have_pkg_progressr <- requireNamespace("progressr", quietly = TRUE)
    if (have_pkg_progressr) {
        if (is.null(pb)) {
            return(NULL)
        }
        return(pb())
    }
    if (inherits(pb, "txtProgressBar")) {
        value <- pb$getVal()
        pb$up(value + 1L)
    }
}

progress_bar_end <- function(pb) {
    have_pkg_progressr <- requireNamespace("progressr", quietly = TRUE)
    if (have_pkg_progressr) {
        return(invisible(NULL))
    }
    if (inherits(pb, "txtProgressBar")) {
        return(close(pb))
    }
}


#' Convert to ChemoSpec Spectra class
#' @param nmr_dataset An [nmr_dataset_1D] object
#' @param desc a description for the dataset
#' @param group A string with the column name from the metadata that has grouping information
#' @return A Spectra object from the ChemoSpec package
#' @export
#' @family import/export functions
#' @examples
#' dir_to_demo_dataset <- system.file("dataset-demo", package = "AlpsNMR")
#' dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
#' dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
#' chemo_spectra <- to_ChemoSpec(dataset_1D)
#'
to_ChemoSpec <- function(nmr_dataset, desc = "A nmr_dataset", group = NULL) {
    require_pkgs(pkg = "ChemoSpec")
    # Now build the Spectra object
    Spectra <- vector("list", 9)
    Spectra[[1]] <- nmr_dataset$axis
    Spectra[[2]] <- nmr_dataset$data_1r
    Spectra[[3]] <- nmr_dataset$metadata$external$NMRExperiment
    if (is.null(group)) {
        Spectra[[4]] <- as.factor(rep(NA_character_, nmr_dataset$num_samples)) # groups
    } else {
        Spectra[[4]] <- as.factor(nmr_meta_get_column(nmr_dataset, group))
    }
    Spectra[[5]] <- rep("black", nmr_dataset$num_samples) # colors
    Spectra[[6]] <- rep(1L, nmr_dataset$num_samples) # sym
    Spectra[[7]] <- rep("a", nmr_dataset$num_samples) # alt.sym
    Spectra[[8]] <- c("ppm", "a.u.") # unit
    Spectra[[9]] <- desc # desc

    # Clean up and verify

    class(Spectra) <- "Spectra"
    names(Spectra) <- c("freq", "data", "names", "groups", "colors", "sym", "alt.sym", "unit", "desc")
    ChemoSpec::chkSpectra(Spectra)
    return(Spectra)
}

#' @title Export data for the ASICS spectral quantification library  
#' @description
#' Exports the spectra matrix, sample names and chemical shift axis into
#' an ASICS Spectra object.
#' 
#' @param dataset An [nmr_dataset_1D] object 
#' @inheritDotParams ASICS::createSpectra -spectra
#' @return An [ASICS::Spectra-class] object 
#' @examples
#' if (requireNamespace("ASICS", quietly=TRUE)) {
#'   nsamp <- 3
#'   npoints <- 300
#'   metadata <- list(external = data.frame(
#'     NMRExperiment = paste0("Sample", seq_len(nsamp))
#'   ))
#'   dataset <- new_nmr_dataset_1D(
#'     ppm_axis = seq(from = 0.2, to = 10, length.out = npoints),
#'     data_1r = matrix(runif(nsamp * npoints), nrow = nsamp, ncol = npoints),
#'     metadata = metadata
#'   )
#'   forAsics <- to_ASICS(dataset)
#'   #ASICS::ASICS(forAsics)
#' }
#' @export 
to_ASICS <- function(dataset, ...) {
    require_pkgs("ASICS")
    spectra_matrix <- t(nmr_data(dataset))
    ASICS::createSpectra(spectra_matrix, ...)
}


abort_if_not <- function(condition, ...) {
    if (!condition) {
        rlang::abort(...)
    }
}


require_pkgs <- function(pkg, msgs = NULL, ...) {
    have_pkgs <- purrr::map_lgl(pkg, function(p) {
        requireNamespace(p, quietly = TRUE)
    })
    names(have_pkgs) <- pkg
    if (!all(have_pkgs)) {
        missing_pkgs <- names(have_pkgs)[!have_pkgs]
        parent_call <- format(rlang::caller_call())
        rlang::abort(
            message = c(
                glue::glue("{parent_call} requires additional packages. Please install them. You may want to use:", parent_call = parent_call),
                glue::glue("    BiocManager::install({deparse(missing_pkgs)})", missing_pkgs = missing_pkgs),
                msgs
            ),
            ...
        )
    }
}


get_geom_text <- function() {
    has_ggrepel <- requireNamespace("ggrepel", quietly = TRUE)
    if (!has_ggrepel) {
        rlang::warn(
            message = c(
                "Text labels in the plot may overlap",
                "i" = 'You may use `install.packages("ggrepel")` to install the ggrepel package',
                "i" = "Otherwise you can safely ignore this warning"
            ),
            .frequency = "once",
            .frequency_id = "install_ggrepel"
        )
    }
    if (has_ggrepel) {
        ggrepel::geom_text_repel
    } else {
        ggplot2::geom_text
    }
}
sipss/AlpsNMR documentation built on Aug. 13, 2024, 5:11 p.m.