#' Convert a given unrolled Dynamic Bayesian Network (DBN) into a rolled DBN using different rolling methods
#'
#' Rolls time-varying networks into a single time-invariant network.
#' This function is compatible with the time-varying networks learnt through
#' learnDbnStruct3dParDeg1.R::learnDbnStructMo1Layer3dParDeg1().
#'
#' @param num.nodes Number of the desired nodes in the rolled DBN
#' @param node.names Names of the desired nodes in the rolled DBN
#' @param num.timepts Number of time points in the unrolled DBN
#' @param unrolled.DBN.adj.matrix Given unrolled DBN adjacency matrix. It is a 2D matrix of dimension ((num.nodes X num.timepts) X (num.nodes X num.timepts)).
#' @param roll.method Which rolling method to use from {'any', 'all', or some real number in (0, 1), like - 0.5}.
#' @param allow.self.loop Boolean to decide whether to allow self loop or not in the rolled DBN
#'
#' @return rolled.DBN.adj.matrix Return the rolled DBN adjacency matrix. It is a 2D matrix of dimension (num.nodes * num.nodes).
#'
#' @keywords internal
#' @noRd
rollDbn <- function(num.nodes, node.names, num.timepts, unrolled.DBN.adj.matrix, roll.method, allow.self.loop) {
if(!base::is.matrix(unrolled.DBN.adj.matrix))
{
base::stop("Error in rollDbn unrolled.DBN.adj.matrix is not a matrix")
}
## Initialize rolled DBN adj matrix as a zero matrix
rolled.DBN.adj.matrix <- base::matrix(0, nrow = num.nodes, ncol = num.nodes,
dimnames = base::c(base::list(node.names), base::list(node.names)))
num.time.trans <- num.timepts - 1 # Num of time transitions
# todo: replace with foreach dopar
for (tgt.node.idx in 1:ncol(rolled.DBN.adj.matrix))
{
tgt.node.name <- base::colnames(rolled.DBN.adj.matrix)[tgt.node.idx]
# grep('^G1', tmpvec, fixed = FALSE) returns the indices of the elements in 'tmpvec' whose values start with 'G1'.
# '^G1' is the given pattern.
# 'fixed = FALSE' represents that the given pattern is a regular expression.
unrolled.DBN.tgt.node.indices <- base::grep(base::paste('^', tgt.node.name, sep = ''),
base::colnames(unrolled.DBN.adj.matrix),
fixed = FALSE)
unrolled.DBN.adj.matrix.tgt.node <- unrolled.DBN.adj.matrix[, unrolled.DBN.tgt.node.indices]
# If the value corr. to a row in 'unrolled.DBN.adj.matrix.tgt.node.single.col'
# is greater than zero, then the node corr. to the row name is a parent of the target node
unrolled.DBN.adj.matrix.tgt.node.single.col <-
base::matrix(rowSums(unrolled.DBN.adj.matrix.tgt.node),
nrow = base::nrow(unrolled.DBN.adj.matrix.tgt.node), ncol = 1,
dimnames = base::c(base::list(base::rownames(unrolled.DBN.adj.matrix.tgt.node)),
tgt.node.name))
# After execution of this for loop,
# rolled.DBN.adj.matrix[src.node.name, tgt.node.name] represents how many times there is an edge from
# the src node to the tgt node in the unrolled DBN. The value is an integer in the interval [0, num.time.trans].
for (src.node.name in node.names)
{
unrolled.DBN.src.node.indices <- base::grep(paste('^', src.node.name, sep = ''),
base::rownames(unrolled.DBN.adj.matrix.tgt.node.single.col),
fixed = FALSE)
rolled.DBN.adj.matrix[src.node.name, tgt.node.name] <-
base::sum(unrolled.DBN.adj.matrix.tgt.node.single.col[unrolled.DBN.src.node.indices, tgt.node.name])
}
}
roll.threshold <- NULL
if(base::is.character(roll.method))
{
if (roll.method == 'any') # Insert an edge in rolled DBN if it is present at least for one time transition
{
roll.threshold <- 1
}
else if (roll.method == 'all') # Insert an edge in rolled DBN if it is present at every time transition
{
roll.threshold <- num.time.trans
}
}
else if (base::is.numeric(roll.method)) # Insert an edge in rolled DBN if it is present at at least (roll.method * num.time.trans) number of time transitions
{
if ((roll.method > 0) & (roll.method < 1))
{
roll.threshold <- num.time.trans * roll.method
}
else
{
# print('\'roll.method\' accepts numeric values in the interval (0,1)')
base::stop('\'roll.method\' accepts numeric values in the interval (0,1)')
}
}
# writeLines('\n rolled.DBN.adj.matrix = \n')
# print(rolled.DBN.adj.matrix)
for (tgt.node.idx in 1:ncol(rolled.DBN.adj.matrix))
{
for (src.node.idx in 1:nrow(rolled.DBN.adj.matrix))
{
if (rolled.DBN.adj.matrix[src.node.idx, tgt.node.idx] >= roll.threshold)
{
rolled.DBN.adj.matrix[src.node.idx, tgt.node.idx] <- 1
}
else
{
rolled.DBN.adj.matrix[src.node.idx, tgt.node.idx] <- 0
}
}
}
# Remove self loops if 'allow.self.loop' = FALSE
if (!allow.self.loop)
{
base::diag(rolled.DBN.adj.matrix) <- 0
}
return(rolled.DBN.adj.matrix)
}
#' Convert a given unrolled Dynamic Bayesian Network (DBN) into a rolled DBN using different rolling methods
#'
#' Rolls time-varying networks into a single time-invariant network.
#' This function is compatible with the time-varying networks learnt through
#' learnDbnStruct3dParDeg1.R::learnDbnStructMo1Layer3dParDeg1_v2().
#'
#' @param num.nodes Number of the desired nodes in the rolled DBN
#' @param node.names Names of the desired nodes in the rolled DBN
#' @param num.timepts Number of time points in the unrolled DBN
#' @param unrolled.DBN.adj.matrix.list Given time-varying network adjacency list. Its length =
#' num.time.trans = (num.timepts - 1). The t^{th} element of the list represents the predicted
#' network adjacency matrix of the t^{th} time transition. This matrix is of dimension
#' (num.nodes \ times num.nodes).
#' @param roll.method Which rolling method to use from {'any', 'all', or some real number in (0, 1), like - 0.5}.
#' @param allow.self.loop Boolean to decide whether to allow self loop or not in the rolled DBN
#'
#' @return rolled.DBN.adj.matrix Return the rolled DBN adjacency matrix. It is a 2D matrix of dimension (num.nodes * num.nodes).
#'
#' @keywords internal
#' @noRd
rollDbn_v2 <- function(num.nodes, node.names, num.timepts, unrolled.DBN.adj.matrix.list,
roll.method, allow.self.loop) {
if(!base::is.list(unrolled.DBN.adj.matrix.list))
{
base::stop("Error in rollDbn_v2 unrolled.DBN.adj.matrix.list is not a list")
}
## Initialize rolled DBN adj matrix as a zero matrix
rolled.DBN.adj.matrix <- base::matrix(0, nrow = num.nodes, ncol = num.nodes,
dimnames = base::c(base::list(node.names), base::list(node.names)))
num.time.trans <- num.timepts - 1 # Num of time transitions
for (list.idx in 1:num.time.trans)
{
rolled.DBN.adj.matrix <- rolled.DBN.adj.matrix + unrolled.DBN.adj.matrix.list[[list.idx]]
}
base::rm(list.idx)
roll.threshold <- NULL
if(base::is.character(roll.method))
{
if (roll.method == 'any') # Insert an edge in rolled DBN if it is present at least for one time transition
{
roll.threshold <- 1
}
else if (roll.method == 'all') # Insert an edge in rolled DBN if it is present at every time transition
{
roll.threshold <- num.time.trans
}
}
else if (base::is.numeric(roll.method)) # Insert an edge in rolled DBN if it is present at at least (roll.method * num.time.trans) number of time transitions
{
if ((roll.method > 0) & (roll.method < 1))
{
roll.threshold <- num.time.trans * roll.method
}
else
{
# print('\'roll.method\' accepts numeric values in the interval (0,1)')
base::stop('\'roll.method\' accepts numeric values in the interval (0,1)')
}
}
# writeLines('\n rolled.DBN.adj.matrix = \n')
# print(rolled.DBN.adj.matrix)
for (tgt.node.idx in 1:ncol(rolled.DBN.adj.matrix))
{
for (src.node.idx in 1:nrow(rolled.DBN.adj.matrix))
{
if (rolled.DBN.adj.matrix[src.node.idx, tgt.node.idx] >= roll.threshold)
{
rolled.DBN.adj.matrix[src.node.idx, tgt.node.idx] <- 1
}
else
{
rolled.DBN.adj.matrix[src.node.idx, tgt.node.idx] <- 0
}
}
}
base::rm(tgt.node.idx)
# Remove self loops if 'allow.self.loop' = FALSE
if (!allow.self.loop)
{
base::diag(rolled.DBN.adj.matrix) <- 0
}
return(rolled.DBN.adj.matrix)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.