#' @title Bar plot of missing values per lines using highcharter
#'
#' @description
#' This method plots a bar plot which represents the distribution of the
#' number of missing values (NA) per lines (ie proteins).
#'
#' @param vizData An instance of the class `VizData`
#' @param pattern xxx
#' @param detailed 'value' or 'percent'
#' @param indLegend xxx
#' @param showValues A logical that indicates whether numeric values should be
#' drawn above the bars.
#' @return A bar plot
#'
#' @author Florence Combes, Samuel Wieczorek
#'
#' @example inst/extdata/examples/ex_metacell_plots.R
#'
#' @name metacell-plots
#'
NULL
#' @rdname metacell-plots
#' @export
#' @import highcharter
#'
metacellPerLinesHisto_HC <- function(vizData,
pattern = NULL,
detailed = FALSE,
indLegend = "auto",
showValues = FALSE) {
stopifnot(inherits(vizData, "VizData"))
if(missing(pattern) || is.null(pattern))
return(NULL)
if (identical(indLegend, "auto")) {
indLegend <- seq.int(from = 2, to = length(vizData@conds))
}
mask <- match.metacell(vizData@metacell,
pattern = pattern,
level = vizData@type)
if (length(mask) == 0)
return(NULL)
NbNAPerRow <- rowSums(mask)
nb.col <- dim(vizData@qdata)[2]
nb.na <- NbNAPerRow
temp <- table(NbNAPerRow)
nb.na2barplot <- rep(0, ncol(vizData@qdata))
for (i in seq_len(length(temp))) {
nb.na2barplot[as.integer(names(temp)[i])] <- temp[i]
}
df <- data.frame(
y = nb.na2barplot,
y_percent = round(100 * nb.na2barplot / dim(vizData@qdata)[1], digits = 2)
)
myColors <- rep("lightgrey", nrow(df))
h1 <- highchart() %>%
hc_title(text = paste0("Nb of lines with (", paste0(pattern, collapse=', '), ") tags")) %>%
hc_add_series(data = df, type = "column", colorByPoint = TRUE) %>%
hc_colors(myColors) %>%
hc_plotOptions(
column = list(stacking = "normal"),
animation = list(duration = 100)
) %>%
hc_legend(enabled = FALSE) %>%
hc_xAxis(categories = row.names(df),
title = list(
text = paste0("Nb of (", paste0(pattern, collapse=', '), ") tags in a line")
)
) %>%
my_hc_ExportMenu(filename = "missingValuesPlot1") %>%
hc_tooltip(
enabled = TRUE,
headerFormat = "",
pointFormat = paste0("{point.y} lines<br>
({point.y_percent}% of all lines)")
)
return(h1)
}
#' @rdname metacell-plots
#' @export
#'
metacellPerLinesHistoPerCondition_HC <- function(vizData,
pattern = NULL,
indLegend = "auto",
showValues = FALSE,
pal = NULL) {
stopifnot(inherits(vizData, "VizData"))
if(missing(pattern) || is.null(pattern))
return(NULL)
u_conds <- unique(vizData@conds)
nbConds <- length(u_conds)
myColors <- NULL
if (is.null(pal)) {
warning("Color palette set to default.")
myColors <- GetColorsForConditions(vizData@conds, ExtendPalette(nbConds))
} else {
if (length(pal) != nbConds) {
warning("The color palette has not the same dimension as the number of samples")
myColors <- GetColorsForConditions(vizData@conds, ExtendPalette(nbConds))
} else {
myColors <- pal
}
}
if (identical(indLegend, "auto")) {
indLegend <- seq.int(from = 2, to = length(vizData@conds))
}
ncolMatrix <- max(unlist(lapply(
u_conds, function(x)
length(which(vizData@conds == x))
)))
mask <- match.metacell(vizData@metacell,
pattern = pattern,
level = vizData@type)
if (length(mask) == 0)
return(NULL)
ll.df <- list()
for (i in u_conds)
{
df <- as.data.frame(matrix(rep(0, 2 * (1 + nbConds)),
nrow = 1 + nbConds,
dimnames = list(
seq(seq.int(from=0, to=(nbConds))),
c("y", "y_percent")
)))
rownames(df) <- seq.int(from = 0, to = (nrow(df) - 1))
ll.df[[i]] <- df
nSample <- length(which(vizData@conds == i))
t <- NULL
if (nSample == 1) {
t <- table(as.integer(mask[, which(vizData@conds == i)]))
} else {
t <- table(rowSums(mask[, which(vizData@conds == i)]))
}
#browser()
df[as.integer(names(t)) + 1, "y"] <- t
df[as.integer(names(t)) + 1, "y_percent"] <- round(100 * t / nrow(vizData@qdata), digits = 2)
ll.df[[i]] <- df
}
h1 <- highchart() %>%
hc_title(text = paste0("Nb of lines containing (",
paste0(pattern, collapse=', '), ") tags (condition-wise)")) %>%
my_hc_chart(chartType = "column") %>%
hc_plotOptions(
column = list(stacking = ""),
dataLabels = list(enabled = FALSE),
animation = list(duration = 100)
) %>%
hc_colors(unique(myColors)) %>%
hc_legend(enabled = FALSE) %>%
hc_xAxis(categories = seq.int(from=0, to=ncolMatrix),
title = list(text = paste0("Nb of (", paste0(pattern, collapse=', '),
") tags in each line (condition-wise)"))) %>%
my_hc_ExportMenu(filename = "missingValuesPlot_2") %>%
hc_tooltip(
headerFormat = "",
pointFormat = "{point.y} lines<br>({point.y_percent}% of all lines)"
)
for (i in seq_len(nbConds)) {
h1 <- h1 %>% hc_add_series(data = ll.df[[u_conds[i]]])
}
return(h1)
}
#' @rdname metacell-plots
#' @import highcharter
#'
#' @examples
#' data(Exp1_R25_pept, package = 'DaparToolshedData')
#' vData <- convert2viz(Exp1_R25_pept)
#' pattern <- "Missing POV"
#' pal <- ExtendPalette(2, "Dark2")
#' metacellHisto_HC(vData@ll.vizData[[1]], pattern, showValues = TRUE, pal = pal)
#'
#' @export
#'
metacellHisto_HC <- function(vizData,
pattern = NULL,
indLegend = "auto",
showValues = FALSE,
pal = NULL) {
stopifnot(inherits(vizData, "VizData"))
if(missing(pattern) || is.null(pattern))
return(NULL)
u_conds <- unique(vizData@conds)
myColors <- NULL
if (is.null(pal)) {
warning("Color palette set to default.")
myColors <- GetColorsForConditions(vizData@conds, ExtendPalette(length(u_conds)))
} else {
if (length(pal) != length(u_conds)) {
warning("The color palette has not the same dimension as the number of samples")
myColors <- GetColorsForConditions(vizData@conds, ExtendPalette(length(u_conds)))
} else {
myColors <- GetColorsForConditions(vizData@conds, pal)
}
}
if (identical(indLegend, "auto")) {
indLegend <- seq.int(from=2, to = length(vizData@conds))
}
mask <- match.metacell(vizData@metacell,
pattern = pattern,
level = vizData@type)
if (length(mask) == 0)
return(NULL)
NbNAPerCol <- colSums(mask)
df <- data.frame(
y = NbNAPerCol,
y_percent = round(100 * NbNAPerCol / nrow(mask), digits = 2)
)
h1 <- highchart() %>%
my_hc_chart(chartType = "column") %>%
hc_title(text = paste0("Nb of (", paste0(pattern, collapse=', '), ") tags by replicate")) %>%
hc_add_series(df, type = "column", colorByPoint = TRUE) %>%
hc_colors(myColors) %>%
hc_plotOptions(
column = list(stacking = "normal"),
animation = list(duration = 100)
) %>%
hc_legend(enabled = FALSE) %>%
hc_xAxis(categories = vizData@conds, title = list(text = "Replicates")) %>%
my_hc_ExportMenu(filename = "missingValuesPlot_3") %>%
hc_tooltip(
headerFormat = "",
pointFormat = "{point.y} lines<br>({point.y_percent}% of all lines)"
)
return(h1)
}
#' @title Heatmap of missing values from an object of class `VizData`
#' @description
#' Plots a heatmap of the quantitative data. Each column represent one of
#' the conditions in the object of class `VizData` and
#' the color is proportional to the mean of intensity for each line of
#' the dataset.
#' The lines have been sorted in order to vizualize easily the different
#' number of missing values. A white square is plotted for missing values.
#'
#' @param vizData An object of class `VizData`.
#' @param pattern xxx
#'
#' @return A heatmap
#' @author Samuel Wieczorek, Alexia Dorffer
#'
#' @rdname metacell-plots
#' @export
#'
#'
wrapper.mvImage <- function(vizData,
pattern = "Missing MEC") {
stopifnot(inherits(vizData, 'VizData'))
indices <- which(apply(match.metacell(vizData@metacell,
pattern,
level = vizData@type),
1, sum) > 0)
if (length(indices) == 0) {
warning("The dataset contains no Missing value on Entire Condition.
So this plot is not available.")
return(NULL)
} else if (length(indices) == 1) {
warning("The dataset contains only one Missing value on Entire
Condition. Currently, Prostar does not handle such dataset to build
the plot. As it has no side-effects on the results, you can continue
your imputation.")
return(NULL)
}
mvImage(vizData@qdata[indices, ], vizData@conds)
}
#' @title Heatmap of missing values
#' @description
#' #' Plots a heatmap of the quantitative data. Each column represent one of
#' the conditions in the object of class `MsnSet` and
#' the color is proportional to the mean of intensity for each line of
#' the dataset.
#' The lines have been sorted in order to vizualize easily the different
#' number of missing values. A white square is plotted for missing values.
#'
#' @return A heatmap
#' @author Samuel Wieczorek, Thomas Burger
#' @examples
#' data(Exp1_R25_pept, package = 'DaparToolshedData')
#' vData <- convert2viz(Exp1_R25_pept)
#' mvImage(vData@ll.vizData[[1]])
#'
#' @export
#'
#' @rdname metacell-plots
#'
mvImage <- function(vizData) {
pkgs.require(c('grDevices', 'stats'))
### build indices of conditions
indCond <- list()
ConditionNames <- unique(vizData@conds)
for (i in ConditionNames) {
indCond <- append(indCond, list(which(i == vizData@conds)))
}
indCond <- stats::setNames(indCond, as.list(c("cond1", "cond2")))
nNA1 <- apply(as.matrix(vizData@qdata[, indCond$cond1]), 1,
function(x) sum(is.na(x)))
nNA2 <- apply(as.matrix(vizData@qdata[, indCond$cond2]), 1,
function(x) sum(is.na(x)))
o <- order(((nNA1 + 1)^2) / (nNA2 + 1))
exprso <- vizData@qdata[o, ]
for (i in seq_len(nrow(exprso))) {
k <- order(exprso[i, indCond$cond1])
exprso[i, rev(indCond$cond1)] <- exprso[i, k]
.temp <- mean(exprso[i, rev(indCond$cond1)], na.rm = TRUE)
exprso[i, which(!is.na(exprso[i, indCond$cond1]))] <- .temp
k <- order(exprso[i, indCond$cond2])
exprso[i, indCond$cond2] <- exprso[i, k + length(indCond$cond1)]
.temp <- mean(exprso[i, indCond$cond2], na.rm = TRUE)
exprso[i, length(indCond$cond1) +
which(!is.na(exprso[i, indCond$cond2]))] <- .temp
}
heatmapForMissingValues(exprso,
col = grDevices::colorRampPalette(c("yellow", "red"))(100),
key = TRUE,
srtCol = 0,
labCol = vizData@conds,
ylab = "Peptides / proteins",
main = "MEC heatmap"
)
# heatmap_HC(exprso,col = colfunc(100),labCol=conds)
}
#' @title Distribution of Observed values with respect to intensity values
#'
#' @description
#' This method shows density plots which represents the repartition of
#' Partial Observed Values for each replicate in the dataset.
#' The colors correspond to the different conditions (slot Condition in in the
#' dataset of class `MsnSet`).
#' The x-axis represent the mean of intensity for one condition and one
#' entity in the dataset (i. e. a protein)
#' whereas the y-axis count the number of observed values for this entity
#' and the considered condition.
#'
#' @param vizData xxx
#' @param pal The different colors for conditions
#' @param pattern xxx
#' @param typeofMV xxx
#' @param title The title of the plot
#'
#' @import highcharter
#'
#' @return Density plots
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' data(Exp1_R25_pept, package = 'DaparToolshedData')
#' vData <- convert2viz(Exp1_R25_pept)
#' pal <- ExtendPalette(length(unique(vData@ll.vizData[[1]]@conds)), "Dark2")
#' pattern <- "Missing MEC"
#' hc_mvTypePlot2(vData@ll.vizData[[1]], pattern = pattern, pal = pal)
#'
#' @import highcharter
#' @rdname metacell-plots
#'
#' @export
#'
hc_mvTypePlot2 <- function(vizData,
pal = NULL,
pattern,
typeofMV = NULL,
title = NULL) {
pkgs.require('stats')
myColors <- NULL
if (is.null(pal)) {
warning("Color palette set to default.")
pal <- ExtendPalette(length(unique(vizData@conds)))
} else {
if (length(pal) != length(unique(vizData@conds))) {
warning("The color palette has not the same dimension as the
number of samples")
pal <- ExtendPalette(length(unique(vizData@conds)))
}
}
mTemp <- nbNA <- nbValues <- matrix(
rep(0, nrow(vizData@qdata) * length(unique(vizData@conds))),
nrow = nrow(vizData@qdata),
dimnames = list(NULL, unique(vizData@conds))
)
dataCond <- data.frame()
ymax <- 0
series <- list()
myColors <- NULL
j <- 1
for (iCond in unique(vizData@conds)) {
if (length(which(vizData@conds == iCond)) == 1) {
mTemp[, iCond] <- qdata[, which(vizData@conds == iCond)]
nbNA[, iCond] <- as.integer(
match.metacell(vizData@metacell[, which(vizData@conds == iCond)],
pattern = pattern,
level = vizData@type)
)
.op1 <- length(which(vizData@conds == iCond))
.op2 <- nbNA[, iCond]
nbValues[, iCond] <- .op1 - .op2
} else {
.qcond <- which(vizData@conds == iCond)
mTemp[, iCond] <- apply(vizData@qdata[, .qcond], 1, mean, na.rm = TRUE)
nbNA[, iCond] <- rowSums(
match.metacell(vizData@metacell[, .qcond],
pattern = pattern,
level = vizData@type)
)
nbValues[, iCond] <- length(.qcond) - nbNA[, iCond]
}
for (i in seq_len(length(which(vizData@conds == iCond)))) {
data <- mTemp[which(nbValues[, iCond] == i), iCond]
tmp <- NULL
if (length(data) >= 2) {
tmp <- stats::density(mTemp[which(nbValues[, iCond] == i), iCond])
tmp$y <- tmp$y + i
if (max(tmp$y) > ymax) {
ymax <- max(tmp$y)
}
}
series[[j]] <- tmp
myColors <- c(myColors, pal[which(unique(vizData@conds) == iCond)])
j <- j + 1
}
}
hc <- highchart(type = "chart") %>%
hc_title(text = title) %>%
my_hc_chart(chartType = "spline", zoomType = "xy") %>%
hc_legend(align = "left", verticalAlign = "top", layout = "vertical"
) %>%
hc_xAxis(title = list(text = "Mean of intensities")) %>%
hc_yAxis(title = list(text = "Number of quantity values per condition"),
tickInterval = 0.5) %>%
hc_tooltip(
headerFormat = "",
pointFormat = "<b> {series.name} </b>: {point.y} ",
valueDecimals = 2
) %>%
my_hc_ExportMenu(filename = paste0(pattern, "_distribution")) %>%
hc_plotOptions(
series = list(
showInLegend = TRUE,
animation = list(duration = 100),
connectNulls = TRUE,
marker = list(enabled = FALSE)
)
)
for (i in seq_len(length(series))) {
hc <- hc_add_series(hc,
data = list_parse(data.frame(cbind(
x = series[[i]]$x,
y = series[[i]]$y
))),
showInLegend = FALSE,
color = myColors[i],
name = vizData@conds[i]
)
}
# add three empty series for the legend entries. Change color and marker
# symbol
for (c in seq_len(length(unique(vizData@conds)))) {
hc <- hc_add_series(hc,
data = data.frame(),
name = unique(vizData@conds)[c],
color = pal[c],
marker = list(symbol = "circle"),
type = "line"
)
}
hc
return(hc)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.