#' Run PHONEMeS
#'
#' This function runs CARNIVAL with the input of phosphoproteomic data (phosphosites and kinases).
#' The prior knowledge network used is the combination of protein-protein and protein-phosphosite
#' interactions from omnipath. Before running CARNIVAL the network is pruned by removing nodes n_steps
#' upstream and downstream of measurements and inputs, respectively.
#'
#' @param inputObj named vector of perturbation targets. Either 1 (up regulated) or -1 (down regulated)
#' @param measObj named vector of the measurements
#' @param netObj data frame of the prior knowledge network
#' @param rmNodes character vector of nodes to remove from prior knowledge network
#' @param pruning logic, set to TRUE if network should be pruned (recommended)
#' @param n_steps_pruning integer giving the order of the neighborhood
#' @param options An object of type \dQuote{\code{list}} defining the run parameters CARNIVAL in PHONEMeS.
#' Use the \code{\link{default_phonemes_options}} function to create a list with default parameter settings.
#' If cplex or cbc are chosen as the solver, the parameter solverPath needs to be supplied.
#' @return List of CARNIVAL results and final inputObj, measObj, netObj used
#' @importFrom dplyr %>%
#' @export
run_phonemes <- function(inputObj,
measObj,
netObj = phonemesPKN,
rmNodes = NULL,
pruning = TRUE,
n_steps_pruning = 50,
carnival_options){
netObj <- netObj %>% dplyr::filter(!(source %in% rmNodes | target %in% rmNodes))
# Remove input and measurements not part of the PKN
inputObj <- inputObj[names(inputObj) %in% netObj$source]
measObj <- measObj[names(measObj) %in% netObj$target]
if (pruning) {
# Remove nodes n_steps downstream of perturbations
meta_g <- igraph::graph_from_data_frame(netObj[,c("source","target",'interaction')],directed = TRUE)
dn_nbours <- igraph::ego(graph = meta_g, order = n_steps_pruning, nodes = names(inputObj), mode = "out")
sub_nodes <- c(unique(names(unlist(dn_nbours))), names(inputObj))
pruned_PKN <- netObj %>% dplyr::filter(source %in% sub_nodes & target %in% sub_nodes)
# Remove nodes n_steps upstream of perturbations
up_nbours <- igraph::ego(graph = meta_g, order = n_steps_pruning, nodes = names(measObj), mode = "in")
up_nodes <- c(unique(names(unlist(up_nbours))), names(measObj))
netObj <- pruned_PKN %>% dplyr::filter(source %in% up_nodes & target %in% up_nodes)
}
# Remove input and measurements not part of the PKN (2nd pruning because some nodes have disapeared)
inputObj <- inputObj[names(inputObj) %in% netObj$source]
measObj <- measObj[names(measObj) %in% netObj$target]
message(paste("Input nodes:", length(inputObj),
"\nMeasurement nodes:", length(measObj),
"\nNetwork nodes:", length(unique(c(netObj$source, netObj$target))),
"\nNetwork edges:", nrow(netObj)))
check_carnival_options(carnival_options)
resCarnival <- CARNIVAL::runVanillaCarnival(perturbations = inputObj,
measurements = measObj,
priorKnowledgeNetwork = netObj,
carnivalOptions = carnival_options)
# Remove nodes with 0 weight
resCarnival$weightedSIF <- resCarnival$weightedSIF %>% dplyr::filter(Weight != 0)
resCarnival$nodesAttributes <- resCarnival$nodesAttributes %>% dplyr::filter(Node %in% union(resCarnival$weightedSIF$Node1, resCarnival$weightedSIF$Node2))
# Add degree to attributes
in_degree <- resCarnival$weightedSIF %>% dplyr::group_by(Node2) %>%
dplyr::summarise(in_degree = dplyr::n()) %>%
dplyr::rename(Node = "Node2")
out_degree <- resCarnival$weightedSIF %>%
dplyr::group_by(Node1) %>%
dplyr::summarise(out_degree = dplyr::n()) %>%
dplyr::rename(Node = "Node1")
degree_df <- base::merge(in_degree, out_degree, by = "Node", all = TRUE) %>%
as.data.frame() %>%
tidyr::replace_na(list(in_degree = 0, out_degree = 0)) %>%
dplyr::mutate(tot_degree = rowSums(dplyr::across(c(in_degree, out_degree))))
resCarnival$nodesAttributes <- base::merge(resCarnival$nodesAttributes,degree_df, by = "Node", all = TRUE) %>% as.data.frame()
return(list(res = resCarnival,
network = netObj,
measurements = measObj,
inputs = inputObj))
}
#' Reattach_psites
#'
#' This function readd links between phosphosite and their correpsonding proteins
#'
#' @param phonemes_res phonemes result from the run_phonemes function
#' @return List of PHONEMES results and final inputObj, measObj, netObj used, with psites attached
#' @export
#'
reattach_psites <- function(phonemes_res)
{
sif <- phonemes_res$res$weightedSIF
att <- phonemes_res$res$nodesAttributes
phospho_prots <- data.frame(sif[grepl("_",sif$Node2),3])
names(phospho_prots) <- "Node1"
phospho_prots$Node2 <- gsub("_.*","",phospho_prots$Node1)
phospho_prots$Sign <- 1
phospho_prots$Weight <- 1
phospho_prots <- phospho_prots[phospho_prots$Node2 %in% att$Node,]
if(length(phospho_prots[,1]) > 0)
{
sif <- as.data.frame(rbind(sif, phospho_prots))
sif <- unique(sif)
} else
{
print("No psites to attach")
}
phonemes_res$res$weightedSIF <- sif
phonemes_res$res$nodesAttributes <- att
return(phonemes_res)
}
#' get_protein_network
#'
#' This function readd links between phosphosite and their correpsonding proteins
#'
#' @param phonemes_res phonemes result from the run_phonemes function
#' @return Phonemes network only consisting of protein-protein interactions
#' @importFrom dplyr %>%
#' @export
#'
get_protein_network <- function(phonemes_res)
{
sif <- phonemes_res$res$weightedSIF
att <- phonemes_res$res$nodesAttributes
sif <- sif %>% dplyr::filter(!grepl(pattern = "[a-zA-Z0-9]_[a-zA-Z0-9]", sif$Node2))
att <- att %>% dplyr::filter(Node %in% union(sif$Node1, sif$Node2))
# Add protein degree to attributes
in_degree <- sif %>% dplyr::group_by(Node2) %>%
dplyr::summarise(protein_in_degree = dplyr::n()) %>%
dplyr::rename(Node = "Node2")
out_degree <- sif %>%
dplyr::group_by(Node1) %>%
dplyr::summarise(protein_out_degree = dplyr::n()) %>%
dplyr::rename(Node = "Node1")
degree_df <- base::merge(in_degree, out_degree, by = "Node", all = TRUE) %>%
as.data.frame() %>%
tidyr::replace_na(list(protein_in_degree = 0, protein_out_degree = 0)) %>%
dplyr::mutate(protein_tot_degree = rowSums(dplyr::across(c(protein_in_degree, protein_out_degree))))
att <- base::merge(att,degree_df, by = "Node", all = TRUE) %>% as.data.frame()
protein_network <- list(weightedSIF = sif,
nodesAttributes = att)
return(protein_network)
}
#' extract_subnetwork
#'
#' This function extracts smaller sub networks from the run_phonemes output
#'
#' @param phonemes_res Phonemes result from the run_phonemes function
#' @param targets Network nodes, starting point for the extraction of the sub network
#' @param n_steps Number of steps to extract down- or upstream of targets
#' @param mode Character constant to specify direction of the extraction. "In" for upstream nodes, "out" for downstream nodes and "all" for both.
#' @return Phonemes sub network
#' @importFrom dplyr %>%
#' @export
#'
extract_subnetwork <- function(phonemes_res, targets, n_steps = 3, mode = "all")
{
sif <- phonemes_res$res$weightedSIF
att <- phonemes_res$res$nodesAttributes
targets <- targets[targets %in% att$Node]
if(purrr::is_empty(targets)){
warning("No target found in network. Returning empty data.frame")
return(list(weightedSIF = data.frame(),
nodesAttributes = data.frame()))
}
meta_g <- igraph::graph_from_data_frame(sif[,c("Node1","Node2",'Sign')],directed = TRUE)
if (mode %in% c("in", "out")) {
dn_nbours <- igraph::ego(graph = meta_g, order = n_steps, nodes = targets, mode = mode)
sub_nodes <- c(unique(names(unlist(dn_nbours))), targets)
} else if (mode %in% "all") {
dn_nbours_in <- igraph::ego(graph = meta_g, order = n_steps, nodes = targets, mode = "in")
dn_nbours_out <- igraph::ego(graph = meta_g, order = n_steps, nodes = targets, mode = "out")
sub_nodes <- c(unique(c(names(unlist(dn_nbours_in)), names(unlist(dn_nbours_out)))), targets)
}
sif <- sif %>% dplyr::filter(Node1 %in% sub_nodes & Node2 %in% sub_nodes)
att <- att %>% dplyr::filter(Node %in% union(sif$Node1, sif$Node2))
subnetwork <- list(weightedSIF = sif,
nodesAttributes = att)
return(subnetwork)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.