##----------------------------------------------------------------------------##
## Tab: Gene expression
##----------------------------------------------------------------------------##
##----------------------------------------------------------------------------##
## UI elements for projection.
##----------------------------------------------------------------------------##
output[["expression_UI"]] <- renderUI({
tagList(
selectizeInput(
'expression_genes_input',
label = 'Gene(s)',
choices = rownames(sample_data()$expression),
options = list(create = TRUE), multiple = TRUE
),
selectInput(
"expression_projection_to_display",
label = "Projection",
choices = names(sample_data()$projections)
),
shinyWidgets::pickerInput(
"expression_samples_to_display",
label = "Samples to display",
choices = sample_data()$sample_names,
selected = sample_data()$sample_names,
options = list("actions-box" = TRUE),
multiple = TRUE
),
shinyWidgets::pickerInput(
"expression_clusters_to_display",
label = "Clusters to display",
choices = sample_data()$cluster_names,
selected = sample_data()$cluster_names,
options = list("actions-box" = TRUE),
multiple = TRUE
),
sliderInput(
"expression_percentage_cells_to_show",
label = "Show % of cells",
min = scatter_plot_percentage_cells_to_show[["min"]],
max = scatter_plot_percentage_cells_to_show[["max"]],
step = scatter_plot_percentage_cells_to_show[["step"]],
value = scatter_plot_percentage_cells_to_show[["default"]]
),
selectInput(
"expression_projection_plotting_order",
label = "Plotting order",
choices = c("Random", "Highest expression on top"),
selected = "Random"
),
sliderInput(
"expression_projection_dot_size",
label = "Point size",
min = scatter_plot_dot_size[["min"]],
max = scatter_plot_dot_size[["max"]],
step = scatter_plot_dot_size[["step"]],
value = scatter_plot_dot_size[["default"]]
),
sliderInput(
"expression_projection_dot_opacity",
label = "Point opacity",
min = scatter_plot_dot_opacity[["min"]],
max = scatter_plot_dot_opacity[["max"]],
step = scatter_plot_dot_opacity[["step"]],
value = scatter_plot_dot_opacity[["default"]]
),
selectInput(
"expression_projection_color_scale",
label = "Color scale",
choices = c("YlGnBu", "YlOrRd","Blues","Greens","Reds","RdBu","viridis"),
selected = "YlGnBu"
)
)
})
##----------------------------------------------------------------------------##
## UI element for color scale range in projection.
##----------------------------------------------------------------------------##
output[["expression_color_scale_range"]] <- renderUI({
range <- range(gene_expression_plot_data()$level)
if ( range[1] == 0 & range[2] == 0 ) {
range[2] = 1
} else {
range[1] <- range[1] %>% round(digits = 2)
range[2] <- range[2] %>% round(digits = 2)
}
tagList(
sliderInput(
"expression_projection_color_scale_range",
label = "Range of color scale",
min = range[1],
max = range[2],
value = c(range[1], range[2])
)
)
})
##----------------------------------------------------------------------------##
## UI element for X and Y scales in projection.
##----------------------------------------------------------------------------##
output[["expression_scales"]] <- renderUI({
req(input[["expression_projection_to_display"]])
projection_to_display <- input[["expression_projection_to_display"]]
range_x_min <- sample_data()$projections[[ projection_to_display ]][,1] %>% min() %>% "*"(ifelse(.<0, 1.1, 0.9)) %>% round()
range_x_max <- sample_data()$projections[[ projection_to_display ]][,1] %>% max() %>% "*"(ifelse(.<0, 0.9, 1.1)) %>% round()
range_y_min <- sample_data()$projections[[ projection_to_display ]][,2] %>% min() %>% "*"(ifelse(.<0, 1.1, 0.9)) %>% round()
range_y_max <- sample_data()$projections[[ projection_to_display ]][,2] %>% max() %>% "*"(ifelse(.<0, 0.9, 1.1)) %>% round()
tagList(
sliderInput(
"expression_projection_scale_x_manual_range",
label = "Range of X axis",
min = range_x_min,
max = range_x_max,
value = c(range_x_min, range_x_max)
),
sliderInput(
"expression_projection_scale_y_manual_range",
label = "Range of Y axis",
min = range_y_min,
max = range_y_max,
value = c(range_y_min, range_y_max)
)
)
})
##----------------------------------------------------------------------------##
## Reactive data: Genes from user.
##----------------------------------------------------------------------------##
# cannot use req() because it delays initialization and plot is updated only with button press so plot doesn't initialize at all
genesToPlot <- reactive({
genesToPlot <- list()
if ( is.null(input[["expression_genes_input"]]) ) {
genesToPlot[["genes_to_display"]] <- character()
} else {
genesToPlot[["genes_to_display"]] <- input[["expression_genes_input"]] %>%
strsplit(",| |;|\n") %>%
unlist() %>%
gsub(pattern = " ", replacement = "", fixed = TRUE) %>%
unique() %>%
.[. != ""]
}
genesToPlot[["genes_to_display_here"]] <- rownames(sample_data()$expression)[ match(tolower(genesToPlot[["genes_to_display"]]), tolower(rownames(sample_data()$expression))) ]
genesToPlot[["genes_to_display_present"]] <- na.omit(genesToPlot[["genes_to_display_here"]])
genesToPlot[["genes_to_display_missing"]] <- genesToPlot[["genes_to_display"]][ which(is.na(genesToPlot[["genes_to_display_here"]])) ]
return(genesToPlot)
})
# select genes to be displayed
output[["expression_genes_displayed"]] <- renderText({
paste0(
"<b>Showing expression for ",
length(genesToPlot()[["genes_to_display_present"]]), " gene(s):</b><br>",
paste0(genesToPlot()[["genes_to_display_present"]], collapse = ", "),
"<br><b>",
length(genesToPlot()[["genes_to_display_missing"]]),
" gene(s) are not in data set: </b><br>",
paste0(genesToPlot()[["genes_to_display_missing"]], collapse = ", ")
)
})
# data to plot
gene_expression_plot_data <- reactive({
req(
input[["expression_projection_to_display"]],
input[["expression_samples_to_display"]],
input[["expression_clusters_to_display"]],
input[["expression_percentage_cells_to_show"]],
input[["expression_projection_plotting_order"]]
)
projection_to_display <- input[["expression_projection_to_display"]]
samples_to_display <- input[["expression_samples_to_display"]]
clusters_to_display <- input[["expression_clusters_to_display"]]
percentage_cells_show <- input[["expression_percentage_cells_to_show"]]
plot_order <- input[["expression_projection_plotting_order"]]
# check which cells to display
cells_to_display <- which(
(sample_data()$cells$sample %in% samples_to_display) &
(sample_data()$cells$cluster %in% clusters_to_display)
)
# randomly remove cells
if ( percentage_cells_show < 100 ) {
number_of_cells_to_plot <- ceiling(
percentage_cells_show / 100 * length(cells_to_display)
)
cells_to_display <- cells_to_display[ sample(1:length(cells_to_display), number_of_cells_to_plot) ]
}
plot <- cbind(
sample_data()$projections[[ projection_to_display ]][ cells_to_display , ],
sample_data()$cells[ cells_to_display , ]
)
if ( length(genesToPlot()$genes_to_display_present) == 0 ) {
plot$level <- 0
} else if ( length(genesToPlot()$genes_to_display_present) == 1 ) {
plot$level <- genesToPlot()$genes_to_display_present %>%
sample_data()$expression[ . , cells_to_display ]
} else {
plot$level <- genesToPlot()$genes_to_display_present %>%
sample_data()$expression[ . , cells_to_display ] %>%
Matrix::colMeans()
}
if ( plot_order == "Random" ) {
plot <- sample(1:nrow(plot), nrow(plot)) %>%
plot[ . , ]
} else if ( plot_order == "Highest expression on top" ) {
plot <- plot[ order(plot$level, decreasing = FALSE) , ]
}
return(plot)
})
##----------------------------------------------------------------------------##
## Projection.
##----------------------------------------------------------------------------##
output[["expression_projection"]] <- plotly::renderPlotly({
req(
input[["expression_projection_to_display"]],
input[["expression_projection_dot_size"]],
input[["expression_projection_dot_opacity"]],
input[["expression_projection_color_scale"]],
input[["expression_projection_color_scale_range"]],
input[["expression_projection_scale_x_manual_range"]],
input[["expression_projection_scale_y_manual_range"]]
)
if ( input[["expression_projection_color_scale"]] == 'viridis' ) {
color_scale <- 'Viridis'
} else {
color_scale <- input[["expression_projection_color_scale"]]
}
if ( ncol(sample_data()$projections[[ input[["expression_projection_to_display"]] ]]) == 3 ) {
plotly::plot_ly(
gene_expression_plot_data(),
x = gene_expression_plot_data()[,1],
y = gene_expression_plot_data()[,2],
z = gene_expression_plot_data()[,3],
type = "scatter3d",
mode = "markers",
marker = list(
colorbar = list(
title = "Expression"
),
color = ~level,
opacity = input[["expression_projection_dot_opacity"]],
colorscale = color_scale,
cauto = FALSE,
cmin = input[["expression_projection_color_scale_range"]][1],
cmax = input[["expression_projection_color_scale_range"]][2],
reversescale = TRUE,
line = list(
color = "rgb(196,196,196)",
width = 1
),
size = input[["expression_projection_dot_size"]]
),
hoverinfo = "text",
text = ~paste(
"<b>Cell</b>: ", gene_expression_plot_data()$cell_barcode, "<br>",
"<b>Sample</b>: ", gene_expression_plot_data()$sample, "<br>",
"<b>Cluster</b>: ", gene_expression_plot_data()$cluster, "<br>",
"<b>Transcripts</b>: ", formatC(gene_expression_plot_data()$nUMI, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expressed genes</b>: ", formatC(gene_expression_plot_data()$nGene, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expression level</b>: ", formatC(gene_expression_plot_data()$level, format = "f", big.mark = ",", digits = 3)
),
source = "expression_projection"
) %>%
plotly::layout(
scene = list(
xaxis = list(
title = colnames(gene_expression_plot_data())[1],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE
),
yaxis = list(
title = colnames(gene_expression_plot_data())[2],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE
),
zaxis = list(
title = colnames(gene_expression_plot_data())[3],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE
)
),
hoverlabel = list(
font = list(
size = 11,
color = "black"
),
bgcolor = "lightgrey"
)
)
} else {
plot <- plotly::plot_ly(
gene_expression_plot_data(),
x = gene_expression_plot_data()[,1],
y = gene_expression_plot_data()[,2],
type = "scatter",
mode = "markers",
marker = list(
colorbar = list(
title = "Expression"
),
color = ~level,
opacity = input[["expression_projection_dot_opacity"]],
colorscale = color_scale,
cauto = FALSE,
cmin = input[["expression_projection_color_scale_range"]][1],
cmax = input[["expression_projection_color_scale_range"]][2],
reversescale = TRUE,
line = list(
color = "rgb(196,196,196)",
width = 1
),
size = input[["expression_projection_dot_size"]]
),
hoverinfo = "text",
text = ~paste(
"<b>Cell</b>: ", gene_expression_plot_data()$cell_barcode, "<br>",
"<b>Sample</b>: ", gene_expression_plot_data()$sample, "<br>",
"<b>Cluster</b>: ", gene_expression_plot_data()$cluster, "<br>",
"<b>Transcripts</b>: ", formatC(gene_expression_plot_data()$nUMI, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expressed genes</b>: ", formatC(gene_expression_plot_data()$nGene, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expression level</b>: ", formatC(gene_expression_plot_data()$level, format = "f", big.mark = ",", digits = 3)
),
source = "expression_projection"
) %>%
plotly::layout(
xaxis = list(
title = colnames(gene_expression_plot_data())[1],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE,
range = c(
input[["expression_projection_scale_x_manual_range"]][1],
input[["expression_projection_scale_x_manual_range"]][2]
)
),
yaxis = list(
title = colnames(gene_expression_plot_data())[2],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE,
range = c(
input[["expression_projection_scale_y_manual_range"]][1],
input[["expression_projection_scale_y_manual_range"]][2]
)
),
dragmode = "pan",
hoverlabel = list(
font = list(
size = 11,
color = "black"
),
bgcolor = "lightgrey"
)
)
if ( preferences$use_webgl == TRUE ) {
plot %>% plotly::toWebGL()
} else {
plot
}
}
})
##----------------------------------------------------------------------------##
## Info box.
##----------------------------------------------------------------------------##
observeEvent(input[["expression_projection_info"]], {
showModal(
modalDialog(
expression_projection_info$text,
title = expression_projection_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Export function.
##----------------------------------------------------------------------------##
observeEvent(input[["expression_projection_export"]], {
req(
input[["expression_projection_to_display"]],
input[["expression_projection_plotting_order"]],
input[["expression_projection_dot_size"]],
input[["expression_projection_dot_opacity"]],
input[["expression_projection_color_scale"]],
input[["expression_projection_color_scale_range"]],
input[["expression_projection_scale_x_manual_range"]],
input[["expression_projection_scale_y_manual_range"]]
)
library("ggplot2")
if ( exists("plot_export_path") ) {
xlim <- c(
input[["expression_projection_scale_x_manual_range"]][1],
input[["expression_projection_scale_x_manual_range"]][2]
)
ylim <- c(
input[["expression_projection_scale_y_manual_range"]][1],
input[["expression_projection_scale_y_manual_range"]][2]
)
if ( length(genesToPlot()$genes_to_display_present) == 0 ) {
out_filename <- paste0(
plot_export_path, "Cerebro_",
sample_data()$experiment$experiment_name, "_gene_expression_none"
)
} else if ( length(genesToPlot()$genes_to_display_present) == 1 ) {
out_filename <- paste0(
plot_export_path, "Cerebro_",
sample_data()$experiment$experiment_name, "_gene_expression_",
genesToPlot()$genes_to_display_present, "_",
input[["expression_projection_to_display"]]
)
} else {
out_filename <- paste0(
plot_export_path, "Cerebro_",
sample_data()$experiment$experiment_name, "_gene_expression_",
genesToPlot()$genes_to_display_present[1],
"_and_others_", input[["expression_projection_to_display"]]
)
}
if ( input[["expression_projection_plotting_order"]] == "Random" ) {
out_filename <- paste0(out_filename, "_random_order.pdf")
} else if ( input[["expression_projection_plotting_order"]] == "Highest expression on top" ) {
out_filename <- paste0(out_filename, "_highest_expression_on_top.pdf")
}
if ( ncol(sample_data()$projections[[ input[["expression_projection_to_display"]] ]]) == 3 ) {
shinyWidgets::sendSweetAlert(
session = session,
title = "Sorry!",
text = "It's currently not possible to create PDF plots from 3D dimensional reductions. Please use the PNG export button in the panel or a 2D dimensional reduction instead.",
type = "error"
)
} else {
p <- ggplot(
gene_expression_plot_data(),
aes_q(
x = as.name(colnames(gene_expression_plot_data())[1]),
y = as.name(colnames(gene_expression_plot_data())[2]),
fill = as.name("level")
)
) +
geom_point(
shape = 21,
size = input[["expression_projection_dot_size"]]/3,
stroke = 0.2,
color = "#c4c4c4",
alpha = input[["expression_projection_dot_opacity"]]
) +
lims(x = xlim, y = ylim) +
theme_bw()
if ( input[["expression_projection_color_scale"]] == 'viridis' ) {
p <- p + viridis::scale_fill_viridis(
option = "viridis",
limits = input[["expression_projection_color_scale_range"]],
oob = scales::squish,
direction = -1,
name = "Log-normalised\nexpression",
guide = guide_colorbar(frame.colour = "black", ticks.colour = "black")
)
} else {
p <- p + scale_fill_distiller(
palette = input[["expression_projection_color_scale"]],
limits = input[["expression_projection_color_scale_range"]],
oob = scales::squish,
direction = 1,
name = "Log-normalised\nexpression",
guide = guide_colorbar(frame.colour = "black", ticks.colour = "black")
)
}
pdf(NULL)
ggsave(out_filename, p, height = 8, width = 11)
if ( file.exists(out_filename) ) {
shinyWidgets::sendSweetAlert(
session = session,
title = "Success!",
text = paste0("Plot saved successfully as: ", out_filename),
type = "success"
)
} else {
shinyWidgets::sendSweetAlert(
session = session,
title = "Error!",
text = "Sorry, it seems something went wrong...",
type = "error"
)
}
}
} else {
shinyWidgets::sendSweetAlert(
session = session,
title = "Error!",
text = "Sorry, we couldn't find a place to store the figure. Please submit an issue on GitHub @ https://github.com/romanhaa/cerebroApp",
type = "error"
)
}
})
##----------------------------------------------------------------------------##
## Table for details of selected cells.
##----------------------------------------------------------------------------##
output[["expression_details_selected_cells"]] <- DT::renderDataTable(server = FALSE, {
## if no selection has been made, return empty table
if ( is.null(plotly::event_data("plotly_selected", source = "expression_projection")) ) {
#table <- gene_expression_plot_data()
#print('no selection made')
table <- tibble(
cell_barcode = character(),
level = numeric(),
sample = character(),
cluster = character(),
nUMI = numeric(),
nGene = numeric()
)
## if no cells are selected, return empty table
} else if ( length(plotly::event_data("plotly_selected", source = "expression_projection")) == 0 ) {
#table <- gene_expression_plot_data()
#print('selection made but no cells inside')
table <- tibble(
cell_barcode = character(),
level = numeric(),
sample = character(),
cluster = character(),
nUMI = numeric(),
nGene = numeric()
)
# #if at least 1 cell has been selected
} else {
#print('selection made and some cells inside')
## get info of selected cells and create identifier from X-Y coordinates
selected_cells <- plotly::event_data("plotly_selected", source = "expression_projection") %>%
dplyr::mutate(identifier = paste0(x, '-', y))
## filter out non-selected cells with X-Y identifier and select some meta
## data
table <- gene_expression_plot_data() %>%
dplyr::rename(X1 = 1, X2 = 2) %>%
dplyr::mutate(identifier = paste0(X1, '-', X2)) %>%
dplyr::filter(identifier %in% selected_cells$identifier) %>%
dplyr::select(cell_barcode, level, sample, cluster, nUMI, nGene)
## if no cells match the selection (e.g. when changing dimensional
## reduction), return empty table
if ( nrow(table) == 0 ) {
#print('selection made and some cells inside but filtering returned 0 cells')
table <- tibble(
cell_barcode = character(),
level = numeric(),
sample = character(),
cluster = character(),
nUMI = numeric(),
nGene = numeric()
)
## if some cells have been selected, format numbers
} else {
table <- table %>%
dplyr::mutate(
level = round(level, digits = 3),
nUMI = formattable::comma(nUMI, big.mark = ',', digits = 0),
nGene = formattable::comma(nGene, big.mark = ',', digits = 0)
)
}
}
table %>%
dplyr::rename(
'Cell barcode' = cell_barcode,
'Expression of selected genes' = level,
'Sample' = sample,
'Cluster' = cluster,
'# of transcripts' = nUMI,
'# of expressed genes' = nGene
) %>%
formattable::formattable(list(
'Expression of selected genes' = formattable::color_tile("white", "orange"),
'# of transcripts' = formattable::color_tile("white", "orange"),
'# of expressed genes' = formattable::color_tile("white", "orange")
)) %>%
formattable::as.datatable(
filter = "top",
selection = "none",
escape = FALSE,
autoHideNavigation = TRUE,
rownames = FALSE,
extensions = c("Buttons"),
class = "cell-border stripe",
options = list(
dom = "Bfrtip",
lengthMenu = c(15, 30, 50, 100),
pageLength = 15,
buttons = list(
"colvis",
list(
extend = "collection",
text = "Download",
buttons = list(
list(
extend = "csv",
filename = "gene_expression_details_of_selected_cells",
title = "Gene expression details of selected cells"
),
list(
extend = "excel",
filename = "gene_expression_details_of_selected_cells",
title = "Gene expression details of selected cells"
)
)
)
)
)
) %>%
DT::formatStyle(
columns = c('Expression of selected genes', '# of transcripts', '# of expressed genes'),
textAlign = 'right'
) %>%
DT::formatStyle(
columns = 'Sample',
textAlign = 'center'#,
# backgroundColor = DT::styleEqual(
# names(reactive_colors()$samples),
# reactive_colors()$samples
# )
) %>%
DT::formatStyle(
columns = 'Cluster',
textAlign = 'center'#,
# color = DT::styleEqual(
# names(reactive_colors()$clusters),
# reactive_colors()$clusters
# )
)
})
# info box
observeEvent(input[["expression_details_selected_cells_info"]], {
showModal(
modalDialog(
expression_details_selected_cells_info$text,
title = expression_details_selected_cells_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Expression in selected cells.
##----------------------------------------------------------------------------##
# violin + box plot
output[["expression_in_selected_cells"]] <- plotly::renderPlotly({
if (
is.null(plotly::event_data("plotly_selected", source = "expression_projection")) |
length(plotly::event_data("plotly_selected", source = "expression_projection")) == 0
) {
data <- gene_expression_plot_data() %>% dplyr::mutate(group = 'not selected')
} else {
selected_cells <- plotly::event_data("plotly_selected", source = "expression_projection") %>%
dplyr::mutate(identifier = paste0(x, '-', y))
data <- gene_expression_plot_data() %>%
dplyr::rename(X1 = 1, X2 = 2) %>%
dplyr::mutate(
identifier = paste0(X1, '-', X2),
group = ifelse(identifier %in% selected_cells$identifier, 'selected', 'not selected'),
group = factor(group, levels = c('selected', 'not selected'))
) %>%
dplyr::select(group, level)
}
plotly::plot_ly(
data,
x = ~group,
y = ~level,
type = "violin",
box = list(
visible = TRUE
),
meanline = list(
visible = TRUE
),
color = ~group,
colors = setNames(c('#e74c3c','#7f8c8d'),c('selected', 'not selected')),
source = "subset",
showlegend = FALSE,
hoverinfo = "y",
marker = list(
size = 5
)
) %>%
plotly::layout(
title = "",
xaxis = list(
title = "",
mirror = TRUE,
showline = TRUE
),
yaxis = list(
title = "Expression level",
range = c(0, max(data$level) * 1.2),
hoverformat = ".2f",
mirror = TRUE,
showline = TRUE
),
dragmode = "select",
hovermode = "compare"
)
})
# info box
observeEvent(input[["expression_in_selected_cells_info"]], {
showModal(
modalDialog(
expression_in_selected_cells_info$text,
title = expression_in_selected_cells_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Expression by sample.
##----------------------------------------------------------------------------##
# box plot
output[["expression_by_sample"]] <- plotly::renderPlotly({
plotly::plot_ly(
gene_expression_plot_data(),
x = ~sample,
y = ~level,
type = "violin",
box = list(
visible = TRUE
),
meanline = list(
visible = TRUE
),
color = ~sample,
colors = reactive_colors()$samples,
source = "subset",
showlegend = FALSE,
hoverinfo = "y",
marker = list(
size = 5
)
) %>%
plotly::layout(
title = "",
xaxis = list(
title = "",
mirror = TRUE,
showline = TRUE
),
yaxis = list(
title = "Expression level",
range = c(0, max(gene_expression_plot_data()$level) * 1.2),
hoverformat = ".2f",
mirror = TRUE,
showline = TRUE
),
dragmode = "select",
hovermode = "compare"
)
})
# info box
observeEvent(input[["expression_by_sample_info"]], {
showModal(
modalDialog(
expression_by_sample_info$text,
title = expression_by_sample_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Expression by cluster.
##----------------------------------------------------------------------------##
# box plot
output[["expression_by_cluster"]] <- plotly::renderPlotly({
plotly::plot_ly(
gene_expression_plot_data(),
x = ~cluster,
y = ~level,
type = "violin",
box = list(
visible = TRUE
),
meanline = list(
visible = TRUE
),
color = ~cluster,
colors = reactive_colors()$clusters,
source = "subset",
showlegend = FALSE,
hoverinfo = "y",
marker = list(
size = 5
)
) %>%
plotly::layout(
title = "",
xaxis = list(
title = "",
mirror = TRUE,
showline = TRUE
),
yaxis = list(
title = "Expression level",
range = c(0, max(gene_expression_plot_data()$level) * 1.2),
hoverformat = ".2f",
mirror = TRUE,
showline = TRUE
),
dragmode = "select",
hovermode = "compare"
)
})
# info box
observeEvent(input[["expression_by_cluster_info"]], {
showModal(
modalDialog(
expression_by_cluster_info$text,
title = expression_by_cluster_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Expression by gene.
##----------------------------------------------------------------------------##
# bar plot
output[["expression_by_gene"]] <- plotly::renderPlotly({
req(
input[["expression_projection_color_scale"]]
)
if ( length(genesToPlot()$genes_to_display_present) == 0 ) {
expression_levels <- data.frame(
"gene" = character(),
"expression" = integer()
)
} else if ( length(genesToPlot()$genes_to_display_present) == 1 ) {
expression_levels <- data.frame(
"gene" = genesToPlot()$genes_to_display_present,
"expression" = mean(sample_data()$expression[ genesToPlot()$genes_to_display_present , ])
)
} else {
expression_levels <- data.frame(
"gene" = rownames(sample_data()$expression[ genesToPlot()$genes_to_display_present , ]),
"expression" = Matrix::rowMeans(sample_data()$expression[ genesToPlot()$genes_to_display_present , ])
) %>%
arrange(-expression) %>%
top_n(50, expression)
}
# color scale
if ( input[["expression_projection_color_scale"]] == 'viridis' ) {
color_scale <- 'Viridis'
} else {
color_scale <- input[["expression_projection_color_scale"]]
}
plotly::plot_ly(
expression_levels,
x = ~gene,
y = ~expression,
text = ~paste0(
expression_levels$gene, ': ',
format(expression_levels$expression, digits = 3)
),
type = "bar",
marker = list(
color = ~expression,
colorscale = color_scale,
reversescale = TRUE,
line = list(
color = "rgb(196,196,196)",
width = 1
)
),
hoverinfo = "text",
showlegend = FALSE
) %>%
plotly::layout(
title = "",
xaxis = list(
title = "",
type = "category",
categoryorder = "array",
categoryarray = expression_levels$gene,
mirror = TRUE,
showline = TRUE
),
yaxis = list(
title = "Expression level",
mirror = TRUE,
showline = TRUE
),
dragmode = "select",
hovermode = "compare"
)
})
# info box
observeEvent(input[["expression_by_gene_info"]], {
showModal(
modalDialog(
expression_by_gene_info[["text"]],
title = expression_by_gene_info[["title"]],
easyClose = TRUE,
footer = NULL
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.