##----------------------------------------------------------------------------##
## Tab: Gene expression
##----------------------------------------------------------------------------##
##----------------------------------------------------------------------------##
## UI elements for projection.
##----------------------------------------------------------------------------##
output[["expression_UI"]] <- renderUI({
tagList(
textAreaInput(
"expression_genes_input",
label = "Gene(s):",
value = "",
placeholder = "Insert genes here.",
resize = "vertical"
),
selectInput(
"expression_projection_to_display",
label = "Projection:",
choices = names(sample_data()$projections)
),
shinyWidgets::pickerInput(
"expression_samples_to_display",
label = "Samples to display:",
choices = sample_data()$sample_names,
selected = sample_data()$sample_names,
options = list("actions-box" = TRUE),
multiple = TRUE
),
shinyWidgets::pickerInput(
"expression_clusters_to_display",
label = "Clusters to display:",
choices = sample_data()$cluster_names,
selected = sample_data()$cluster_names,
options = list("actions-box" = TRUE),
multiple = TRUE
),
sliderInput(
"expression_percentage_cells_to_show",
label = "Show % of cells",
min = scatter_plot_percentage_cells_to_show[["min"]],
max = scatter_plot_percentage_cells_to_show[["max"]],
step = scatter_plot_percentage_cells_to_show[["step"]],
value = scatter_plot_percentage_cells_to_show[["default"]]
),
selectInput(
"expression_projection_plotting_order",
label = "Plotting order:",
choices = c("Random", "Highest expression on top"),
selected = "Random"
),
sliderInput(
"expression_projection_dot_size",
label = "Point size:",
min = scatter_plot_dot_size[["min"]],
max = scatter_plot_dot_size[["max"]],
step = scatter_plot_dot_size[["step"]],
value = scatter_plot_dot_size[["default"]]
),
sliderInput(
"expression_projection_dot_opacity",
label = "Point opacity:",
min = scatter_plot_dot_opacity[["min"]],
max = scatter_plot_dot_opacity[["max"]],
step = scatter_plot_dot_opacity[["step"]],
value = scatter_plot_dot_opacity[["default"]]
)
)
})
##----------------------------------------------------------------------------##
## UI element for X and Y scales in projection.
##----------------------------------------------------------------------------##
output[["expression_scales"]] <- renderUI({
req(input[["expression_projection_to_display"]])
projection_to_display <- input[["expression_projection_to_display"]]
range_x_min <- sample_data()$projections[[ projection_to_display ]][,1] %>% min() %>% "*"(ifelse(.<0, 1.1, 0.9)) %>% round()
range_x_max <- sample_data()$projections[[ projection_to_display ]][,1] %>% max() %>% "*"(ifelse(.<0, 0.9, 1.1)) %>% round()
range_y_min <- sample_data()$projections[[ projection_to_display ]][,2] %>% min() %>% "*"(ifelse(.<0, 1.1, 0.9)) %>% round()
range_y_max <- sample_data()$projections[[ projection_to_display ]][,2] %>% max() %>% "*"(ifelse(.<0, 0.9, 1.1)) %>% round()
tagList(
sliderInput(
"expression_projection_scale_x_manual_range",
label = "X axis",
min = range_x_min,
max = range_x_max,
value = c(range_x_min, range_x_max)
),
sliderInput(
"expression_projection_scale_y_manual_range",
label = "Y axis",
min = range_y_min,
max = range_y_max,
value = c(range_y_min, range_y_max)
)
)
})
##----------------------------------------------------------------------------##
## Reactive data: Genes from user.
##----------------------------------------------------------------------------##
# cannot use req() because it delays initialization and plot is updated only with button press so plot doesn't initialize at all
genesToPlot <- eventReactive(input[["keyPressed"]], ignoreNULL = FALSE, {
genesToPlot <- list()
if ( is.null(input[["expression_genes_input"]]) ) {
genesToPlot[["genes_to_display"]] <- character()
} else {
genesToPlot[["genes_to_display"]] <- input[["expression_genes_input"]] %>%
strsplit(",| |;|\n") %>%
unlist() %>%
gsub(pattern = " ", replacement = "", fixed = TRUE) %>%
unique() %>%
.[. != ""]
}
genesToPlot[["genes_to_display_here"]] <- rownames(sample_data()$expression)[ match(tolower(genesToPlot[["genes_to_display"]]), tolower(rownames(sample_data()$expression))) ]
genesToPlot[["genes_to_display_present"]] <- na.omit(genesToPlot[["genes_to_display_here"]])
genesToPlot[["genes_to_display_missing"]] <- genesToPlot[["genes_to_display"]][ which(is.na(genesToPlot[["genes_to_display_here"]])) ]
return(genesToPlot)
})
# select genes to be displayed
output[["expression_genes_displayed"]] <- renderText({
paste0(
"<b>Showing expression for ",
length(genesToPlot()[["genes_to_display_present"]]), " gene(s):</b><br>",
paste0(genesToPlot()[["genes_to_display_present"]], collapse = ", "),
"<br><b>",
length(genesToPlot()[["genes_to_display_missing"]]),
" gene(s) are not in data set: </b><br>",
paste0(genesToPlot()[["genes_to_display_missing"]], collapse = ", ")
)
})
# data to plot
gene_expression_plot_data <- reactive({
req(
input[["expression_projection_to_display"]],
input[["expression_samples_to_display"]],
input[["expression_clusters_to_display"]],
input[["expression_percentage_cells_to_show"]],
input[["expression_projection_plotting_order"]]
)
projection_to_display <- input[["expression_projection_to_display"]]
samples_to_display <- input[["expression_samples_to_display"]]
clusters_to_display <- input[["expression_clusters_to_display"]]
percentage_cells_show <- input[["expression_percentage_cells_to_show"]]
plot_order <- input[["expression_projection_plotting_order"]]
# check which cells to display
cells_to_display <- which(
(sample_data()$cells$sample %in% samples_to_display) &
(sample_data()$cells$cluster %in% clusters_to_display)
)
# randomly remove cells
if ( percentage_cells_show < 100 ) {
number_of_cells_to_plot <- ceiling(
percentage_cells_show / 100 * length(cells_to_display)
)
cells_to_display <- cells_to_display[ sample(1:length(cells_to_display), number_of_cells_to_plot) ]
}
plot <- cbind(
sample_data()$projections[[ projection_to_display ]][ cells_to_display , ],
sample_data()$cells[ cells_to_display , ]
)
if ( length(genesToPlot()$genes_to_display_present) == 0 ) {
plot$level <- 0
} else if ( length(genesToPlot()$genes_to_display_present) == 1 ) {
plot$level <- genesToPlot()$genes_to_display_present %>%
sample_data()$expression[ . , cells_to_display ]
} else {
plot$level <- genesToPlot()$genes_to_display_present %>%
sample_data()$expression[ . , cells_to_display ] %>%
Matrix::colMeans()
}
if ( plot_order == "Random" ) {
plot <- sample(1:nrow(plot), nrow(plot)) %>%
plot[ . , ]
} else if ( plot_order == "Highest expression on top" ) {
plot <- plot[ order(plot$level, decreasing = FALSE) , ]
}
return(plot)
})
##----------------------------------------------------------------------------##
## Projection.
##----------------------------------------------------------------------------##
output[["expression_projection_plotly"]] <- plotly::renderPlotly({
req(
input[["expression_projection_dot_opacity"]],
input[["expression_projection_dot_size"]],
input[["expression_projection_scale_x_manual_range"]],
input[["expression_projection_scale_y_manual_range"]]
)
if ( ncol(sample_data()$projections[[ input[["expression_projection_to_display"]] ]]) == 3 ) {
plotly::plot_ly(
gene_expression_plot_data(),
x = gene_expression_plot_data()[,1],
y = gene_expression_plot_data()[,2],
z = gene_expression_plot_data()[,3],
type = "scatter3d",
mode = "markers",
marker = list(
colorbar = list(
title = "Expression"
),
color = ~level,
opacity = input[["expression_projection_dot_opacity"]],
colorscale = "YlGnBu",
reversescale = TRUE,
line = list(
color = "rgb(196,196,196)",
width = 1
),
size = input[["expression_projection_dot_size"]]
),
hoverinfo = "text",
text = ~paste(
"<b>Cell</b>: ", gene_expression_plot_data()$cell_barcode, "<br>",
"<b>Sample</b>: ", gene_expression_plot_data()$sample, "<br>",
"<b>Cluster</b>: ", gene_expression_plot_data()$cluster, "<br>",
"<b>Transcripts</b>: ", formatC(gene_expression_plot_data()$nUMI, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expressed genes</b>: ", formatC(gene_expression_plot_data()$nGene, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expression level</b>: ", formatC(gene_expression_plot_data()$level, format = "f", big.mark = ",", digits = 3)
)
) %>%
plotly::layout(
scene = list(
xaxis = list(
title = colnames(gene_expression_plot_data())[1],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE
),
yaxis = list(
title = colnames(gene_expression_plot_data())[2],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE
),
zaxis = list(
title = colnames(gene_expression_plot_data())[3],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE
)
),
hoverlabel = list(
font = list(
size = 11,
color = "black"
),
bgcolor = "lightgrey"
)
)
} else {
plot <- plotly::plot_ly(
gene_expression_plot_data(),
x = gene_expression_plot_data()[,1],
y = gene_expression_plot_data()[,2],
type = "scatter",
mode = "markers",
marker = list(
colorbar = list(
title = "Expression"
),
color = ~level,
opacity = input[["expression_projection_dot_opacity"]],
colorscale = "YlGnBu",
reversescale = TRUE,
line = list(
color = "rgb(196,196,196)",
width = 1
),
size = input[["expression_projection_dot_size"]]
),
hoverinfo = "text",
text = ~paste(
"<b>Cell</b>: ", gene_expression_plot_data()$cell_barcode, "<br>",
"<b>Sample</b>: ", gene_expression_plot_data()$sample, "<br>",
"<b>Cluster</b>: ", gene_expression_plot_data()$cluster, "<br>",
"<b>Transcripts</b>: ", formatC(gene_expression_plot_data()$nUMI, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expressed genes</b>: ", formatC(gene_expression_plot_data()$nGene, format = "f", big.mark = ",", digits = 0), "<br>",
"<b>Expression level</b>: ", formatC(gene_expression_plot_data()$level, format = "f", big.mark = ",", digits = 3)
)
) %>%
plotly::layout(
xaxis = list(
title = colnames(gene_expression_plot_data())[1],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE,
range = c(
input[["expression_projection_scale_x_manual_range"]][1],
input[["expression_projection_scale_x_manual_range"]][2]
)
),
yaxis = list(
title = colnames(gene_expression_plot_data())[2],
mirror = TRUE,
showline = TRUE,
zeroline = FALSE,
range = c(
input[["expression_projection_scale_y_manual_range"]][1],
input[["expression_projection_scale_y_manual_range"]][2]
)
),
dragmode = "pan",
hoverlabel = list(
font = list(
size = 11,
color = "black"
),
bgcolor = "lightgrey"
)
)
if ( preferences$use_webgl == TRUE ) {
plot %>% plotly::toWebGL()
} else {
plot
}
}
})
##----------------------------------------------------------------------------##
## Info box.
##----------------------------------------------------------------------------##
observeEvent(input[["expression_projection_info"]], {
showModal(
modalDialog(
expression_projection_info$text,
title = expression_projection_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Export function.
##----------------------------------------------------------------------------##
observeEvent(input[["expression_projection_export"]], {
req(
input[["expression_projection_to_display"]],
input[["expression_projection_plotting_order"]],
input[["expression_projection_dot_size"]],
input[["expression_projection_dot_opacity"]],
input[["expression_projection_scale_x_manual_range"]],
input[["expression_projection_scale_y_manual_range"]]
)
library("ggplot2")
if ( exists("plot_export_path") ) {
xlim <- c(
input[["expression_projection_scale_x_manual_range"]][1],
input[["expression_projection_scale_x_manual_range"]][2]
)
ylim <- c(
input[["expression_projection_scale_y_manual_range"]][1],
input[["expression_projection_scale_y_manual_range"]][2]
)
if ( length(genesToPlot()$genes_to_display_present) == 0 ) {
out_filename <- paste0(
plot_export_path, "Cerebro_",
sample_data()$experiment$experiment_name, "_gene_expression_none"
)
} else if ( length(genesToPlot()$genes_to_display_present) == 1 ) {
out_filename <- paste0(
plot_export_path, "Cerebro_",
sample_data()$experiment$experiment_name, "_gene_expression_",
genesToPlot()$genes_to_display_present, "_",
input[["expression_projection_to_display"]]
)
} else {
out_filename <- paste0(
plot_export_path, "Cerebro_",
sample_data()$experiment$experiment_name, "_gene_expression_",
genesToPlot()$genes_to_display_present[1],
"_and_others_", input[["expression_projection_to_display"]]
)
}
if ( input[["expression_projection_plotting_order"]] == "Random" ) {
out_filename <- paste0(out_filename, "_random_order.pdf")
} else if ( input[["expression_projection_plotting_order"]] == "Highest expression on top" ) {
out_filename <- paste0(out_filename, "_highest_expression_on_top.pdf")
}
if ( ncol(sample_data()$projections[[ input[["expression_projection_to_display"]] ]]) == 3 ) {
shinyWidgets::sendSweetAlert(
session = session,
title = "Sorry!",
text = "It's currently not possible to create PDF plots from 3D dimensional reductions. Please use the PNG export button in the panel or a 2D dimensional reduction instead.",
type = "error"
)
} else {
p <- ggplot(
gene_expression_plot_data(),
aes_q(
x = as.name(colnames(gene_expression_plot_data())[1]),
y = as.name(colnames(gene_expression_plot_data())[2]),
fill = as.name("level")
)
) +
geom_point(
shape = 21,
size = input[["expression_projection_dot_size"]]/3,
stroke = 0.2,
color = "#c4c4c4",
alpha = input[["expression_projection_dot_opacity"]]
) +
scale_fill_distiller(
palette = "YlGnBu",
direction = 1,
name = "Log-normalised\nexpression",
guide = guide_colorbar(frame.colour = "black", ticks.colour = "black")
) +
lims(x = xlim, y = ylim) +
theme_bw()
pdf(NULL)
ggsave(out_filename, p, height = 8, width = 11)
if ( file.exists(out_filename) ) {
shinyWidgets::sendSweetAlert(
session = session,
title = "Success!",
text = paste0("Plot saved successfully as: ", out_filename),
type = "success"
)
} else {
shinyWidgets::sendSweetAlert(
session = session,
title = "Error!",
text = "Sorry, it seems something went wrong...",
type = "error"
)
}
}
} else {
shinyWidgets::sendSweetAlert(
session = session,
title = "Error!",
text = "Sorry, we couldn't find a place to store the figure. Please submit an issue on GitHub @ https://github.com/romanhaa/cerebroApp",
type = "error"
)
}
})
##----------------------------------------------------------------------------##
## Expression by sample.
##----------------------------------------------------------------------------##
# box plot
output[["expression_by_sample"]] <- plotly::renderPlotly({
plotly::plot_ly(
gene_expression_plot_data(),
x = ~sample,
y = ~level,
type = "violin",
box = list(
visible = TRUE
),
meanline = list(
visible = TRUE
),
color = ~sample,
colors = sample_data()$samples$colors,
source = "subset",
showlegend = FALSE,
hoverinfo = "y",
marker = list(
size = 5
)
) %>%
plotly::layout(
title = "",
xaxis = list(
title = "",
mirror = TRUE,
showline = TRUE
),
yaxis = list(
title = "Expression level",
hoverformat = ".2f",
mirror = TRUE,
showline = TRUE
),
dragmode = "select",
hovermode = "compare"
)
})
# info box
observeEvent(input[["expression_by_sample_info"]], {
showModal(
modalDialog(
expression_by_sample_info$text,
title = expression_by_sample_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Expression by cluster.
##----------------------------------------------------------------------------##
# box plot
output[["expression_by_cluster"]] <- plotly::renderPlotly({
plotly::plot_ly(
gene_expression_plot_data(),
x = ~cluster,
y = ~level,
type = "violin",
box = list(
visible = TRUE
),
meanline = list(
visible = TRUE
),
color = ~cluster,
colors = sample_data()$clusters$colors,
source = "subset",
showlegend = FALSE,
hoverinfo = "y",
marker = list(
size = 5
)
) %>%
plotly::layout(
title = "",
xaxis = list(
title = "",
mirror = TRUE,
showline = TRUE
),
yaxis = list(
title = "Expression level",
hoverformat = ".2f",
mirror = TRUE,
showline = TRUE
),
dragmode = "select",
hovermode = "compare"
)
})
# info box
observeEvent(input[["expression_by_cluster_info"]], {
showModal(
modalDialog(
expression_by_cluster_info$text,
title = expression_by_cluster_info$title,
easyClose = TRUE,
footer = NULL
)
)
})
##----------------------------------------------------------------------------##
## Expression by gene.
##----------------------------------------------------------------------------##
# bar plot
output[["expression_by_gene"]] <- plotly::renderPlotly({
if ( length(genesToPlot()$genes_to_display_present) == 0 ) {
expression_levels <- data.frame(
"gene" = character(),
"expression" = integer()
)
} else if ( length(genesToPlot()$genes_to_display_present) == 1 ) {
expression_levels <- data.frame(
"gene" = genesToPlot()$genes_to_display_present,
"expression" = mean(sample_data()$expression[ genesToPlot()$genes_to_display_present , ])
)
} else {
expression_levels <- data.frame(
"gene" = rownames(sample_data()$expression[ genesToPlot()$genes_to_display_present , ]),
"expression" = Matrix::rowMeans(sample_data()$expression[ genesToPlot()$genes_to_display_present , ])
) %>%
arrange(-expression) %>%
top_n(50, expression)
}
plotly::plot_ly(
expression_levels,
x = ~gene,
y = ~expression,
text = ~gene,
type = "bar",
marker = list(
color = ~expression,
colorscale = "YlGnBu",
reversescale = TRUE,
line = list(
color = "rgb(196,196,196)",
width = 1
)
),
hoverinfo = "text",
showlegend = FALSE
) %>%
plotly::layout(
title = "",
xaxis = list(
title = "",
type = "category",
categoryorder = "array",
categoryarray = expression_levels$gene,
mirror = TRUE,
showline = TRUE
),
yaxis = list(
title = "Expression level",
mirror = TRUE,
showline = TRUE
),
dragmode = "select",
hovermode = "compare"
)
})
# info box
observeEvent(input[["expression_by_gene_info"]], {
showModal(
modalDialog(
expression_by_gene_info[["text"]],
title = expression_by_gene_info[["title"]],
easyClose = TRUE,
footer = NULL
)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.