## PLOTMDS.R
# Class to hold multidimensional scaling output
setClass("MDS",representation("list"))
setMethod("show","MDS",function(object) {
cat("An object of class MDS\n")
print(unclass(object))
})
plotMDS <- function(x,...) UseMethod("plotMDS")
plotMDS.MDS <- function(x,labels=colnames(x$distance.matrix),col=NULL,cex=1,dim.plot=x$dim.plot,xlab=paste("Dimension",dim.plot[1]),ylab=paste("Dimension",dim.plot[2]),...)
# Method for MDS objects
# Create a new plot using MDS coordinates or distances previously created
# Gordon Smyth
# 21 May 2011. Last modified 6 Sep 2012.
{
# Are new dimensions requested?
if(!all(dim.plot==x$dim.plot)) {
ndim <- max(dim.plot)
if(ndim > ncol(x$cmdscale.out)) x$cmdscale.out <- cmdscale(as.dist(x$distance.matrix),k=ndim)
x$x <- x$cmdscale.out[,dim.plot[1]]
x$y <- x$cmdscale.out[,dim.plot[2]]
}
# Estimate width of labels in plot coordinates.
# Estimate will be ok for default plot width, but maybe too small for smaller plots.
if(is.null(labels)) labels <- 1:length(x$x)
labels <- as.character(labels)
StringRadius <- 0.01*cex*nchar(labels)
left.x <- x$x-StringRadius
right.x <- x$x+StringRadius
# Redo plot
plot(c(left.x,right.x),c(x$y,x$y),type="n",xlab=xlab,ylab=ylab,...)
text(x$x,x$y,labels=labels,col=col,cex=cex)
return(invisible(x))
}
plotMDS.default <- function(x,top=500,labels=colnames(x),col=NULL,cex=1,dim.plot=c(1,2),ndim=max(dim.plot),gene.selection="pairwise",xlab=paste("Dimension",dim.plot[1]),ylab=paste("Dimension",dim.plot[2]),...)
# Multi-dimensional scaling with top-distance
# Di Wu and Gordon Smyth
# 19 March 2009. Last modified 29 May 2013.
{
# Check x
x <- as.matrix(x)
nsamples <- ncol(x)
if(nsamples < 3) stop("Need at least 3 columns")
cn <- colnames(x)
# Remove rows with missing or Inf values
bad <- rowSums(is.finite(x)) < nsamples
if(any(bad)) x <- x[!bad,,drop=FALSE]
nprobes <- nrow(x)
# Check top
top <- min(top,nprobes)
# Check labels
if(is.null(labels)) labels <- 1:nsamples
labels <- as.character(labels)
# Check dim
if(ndim < 2) stop("Need at least two dim.plot")
if(nsamples < ndim) stop("Two few samples")
if(nprobes < ndim) stop("Too few rows")
# Check gene.selection
gene.selection <- match.arg(gene.selection,c("pairwise","common"))
# Distance matrix from pairwise leading fold changes
dd <- matrix(0,nrow=nsamples,ncol=nsamples,dimnames=list(cn,cn))
topindex <- nprobes-top+1
if(gene.selection=="pairwise") {
# Distance measure is mean of top squared deviations for each pair of arrays
for (i in 2:(nsamples))
for (j in 1:(i-1))
dd[i,j]=sqrt(mean(sort.int((x[,i]-x[,j])^2,partial=topindex)[topindex:nprobes]))
} else {
# Same genes used for all comparisons
s <- rowMeans((x-rowMeans(x))^2)
q <- quantile(s,p=(topindex-1.5)/(nprobes-1))
x <- x[s>=q,]
for (i in 2:(nsamples))
dd[i,1:(i-1)]=sqrt(colMeans((x[,i]-x[,1:(i-1),drop=FALSE])^2))
}
# Multi-dimensional scaling
a1 <- cmdscale(as.dist(dd),k=ndim)
# Make MDS object and call plotMDS method
mds <- new("MDS",list(dim.plot=dim.plot,distance.matrix=dd,cmdscale.out=a1,top=top,gene.selection=gene.selection))
mds$x <- a1[,dim.plot[1]]
mds$y <- a1[,dim.plot[2]]
plotMDS(mds,labels=labels,col=col,cex=cex,xlab=xlab,ylab=ylab,...)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.