R/QFeatures-class.R

Defines functions dropEmptyAssays .transferData .updateColDataFromAssays .checkAssaysToInsert .normIndex replaceAssay removeAssay addAssay longFormat rowDataNames selectRowData rbindRowData .combineAssayLinks .combineColData .combineAssays .pruneAssayLinks .pruneAssayLink .pruneHits .offsetNodes .plotlyGraph QFeatures

Documented in addAssay dropEmptyAssays longFormat QFeatures rbindRowData removeAssay replaceAssay rowDataNames selectRowData

##' @title Quantitative MS QFeatures
##'
##' @description
##'
##' Conceptually, a `QFeatures` object holds a set of *assays*, each
##' composed of a `matrix` (or `array`) containing quantitative data
##' and row annotations (meta-data).  The number and the names of the
##' columns (samples) must always be the same across the assays, but
##' the number and the names of the rows (features) can vary. The
##' assays are typically defined as `SummarizedExperiment` objects. In
##' addition, a `QFeatures` object also uses a single `DataFrame` to
##' annotate the samples (columns) represented in all the matrices.
##'
##' The `QFeatures` class extends the
##' [MultiAssayExperiment::MultiAssayExperiment] and inherits all
##' the functionality of the
##' [MultiAssayExperiment::MultiAssayExperiment] class.
##'
##' A typical use case for such `QFeatures` object is to represent
##' quantitative proteomics (or metabolomics) data, where different
##' assays represent quantitation data at the PSM (the main assay),
##' peptide and protein level, and where peptide values are computed
##' from the PSM data, and the protein-level data is calculated based
##' on the peptide-level values. The largest assay (the one with the
##' highest number of features, PSMs in the example above) is
##' considered the main assay.
##'
##' The recommended way to create `QFeatures` objects is the use the
##' [readQFeatures()] function, that creates an instance from tabular
##' data. The `QFeatures` constructor can be used to create objects
##' from their bare parts.  It is the user's responsability to make
##' sure that these match the class validity requirements.
##'
##' @section Constructors:
##'
##' - `QFeatures(..., assayLinks)` allows the manual construction of
##'   objects. It is the user's responsability to make sure these
##'   comply. The arguments in `...` are those documented in
##'   [MultiAssayExperiment::MultiAssayExperiment()]. For details
##'   about `assayLinks`, see [AssayLinks]. An example is shown below.
##'
##' - The [readQFeatures()] function constructs a `QFeatures` object
##'   from text-based spreadsheet or a `data.frame` used to generate
##'   an assay. See the function manual page for details and an
##'   example.
##'
##' @section Accessors:
##'
##' - The `QFeatures` class extends the
##'   [MultiAssayExperiment::MultiAssayExperiment] class and inherits
##'   all its accessors and replacement methods.
##'
##' - The `rowData` method returns a `DataFrameList` containing the
##'   `rowData` for each assay of the `QFeatures` object. On the other
##'   hand, `rowData` can be modified using `rowData(x) <- value`,
##'   where `value` is a list of tables that can be coerced to `DFrame`
##'   tables. The names of `value` point to the assays for
##'   which the `rowData` must be replaced. The column names of each
##'   table are used to replace the data in the existing `rowData`. If
##'   the column name does not exist, a new column is added to the
##'   `rowData`.
##'
##' - The `rbindRowData` functions returns a `DFrame` table that
##'   contains the row binded `rowData` tables from the selected
##'   assays. In this context, `i` is a `character()`, `integer()` or
##'   `logical()` object for subsetting assays. Only rowData variables
##'   that are common to all assays are kept.
##'
##' - The `rowDataNames` accessor returns a list with the `rowData`
##'   variable names.
##'
##' - The `longFormat` accessor takes a `QFeatures` object and returns
##'   it in a long format `DataFrame`. Each quantitative value is
##'   reported on a separate line. `colData` and `rowData` data can
##'   also be added. This function is an extension of the `longFormat`
##'   function in the [MultiAssayExperiment::MultiAssayExperiment].
##'
##' @section Adding, removing and replacing assays:
##'
##' - The [aggregateFeatures()] function creates a new assay by
##'   aggregating features of an existing assay.
##'
##' - `addAssay(x, y, name, assayLinks)`: Adds one or more
##'   new assay(s) `y` to the `QFeatures` instance `x`. `name`
##'   is a `character(1)` naming the assay if only one assay is
##'   provided, and is ignored if `y` is a list of assays. `assayLinks`
##'   is an optional [AssayLinks]. The `colData(y)` is
##'   automatically added to `colData(x)` by matching sample
##'   names, that is `colnames(y)`. If the samples are not present in
##'   `x`, the rows of `colData(x)` are extended to account for the
##'   new samples. Be aware that conflicting information between the
##'   `colData(y)` and the `colData(x)` will result in an
##'   error.
##'
##' - `removeAssay(x, i)`: Removes one or more assay(s) from the
##'   `QFeatures` instance `x`. In this context, `i` is a `character()`,
##'   `integer()` or `logical()` that indicates which assay(s) to
##'   remove.
##'
##' - `replaceAssay(x, y, i)`: Replaces one or more
##'   assay(s) from the `QFeatures` instance `x`. In this context, `i`
##'   is a `character()`, `integer()` or `logical()` that indicates
##'   which assay(s) to replace. The `AssayLinks` from or to
##'   any replaced assays are automatically removed, unless the
##'   replacement has the same dimension names (columns and row, order
##'   agnostic). Be aware that conflicting information between
##'   `colData(y)` and `colData(x)` will result in an error.
##'
##' - `x[[i]] <- value`: a generic method for adding (when `i` is not
##'   in `names(x)`), removing (when `value` is null) or replacing (when
##'   `i` is in `names(x)`). Note that the arguments `j` and `...` from
##'   the S4 replacement method signature are not allowed.
##'
##' @section Subsetting:
##'
##' - QFeatures object can be subset using the `x[i, j, k, drop = TRUE]`
##'   paradigm. In this context, `i` is a `character()`, `integer()`,
##'   `logical()` or `GRanges()` object for subsetting by rows. See
##'   the argument descriptions for details on the remaining arguments.
##'
##' - The [subsetByFeature()] function can be used to subset a
##'   `QFeatures` object using one or multiple feature names that will
##'   be matched across different assays, taking the aggregation
##'   relation between assays.
##'
##' - The `selectRowData(x, rowvars)` function can be used to
##'   select a limited number of `rowData` columns of interest named
##'   in `rowvars` in the `x` instance of class `QFeatures`. All other
##'   variables than `rowvars` will be dropped. In case an element in
##'   `rowvars` isn't found in any `rowData` variable, a message is
##'   printed.
##'
##' - The `dropEmptyAssays(object, dims)` function removes empty
##'   assays from a `QFeatures`. Empty assays are defined as having 0
##'   rows and/or 0 columns, as defined by the `dims` argument.
##'
##' @param object An instance of class [QFeatures].
##'
##' @param x An instance of class [QFeatures].
##'
##' @param i An indexing vector. See the corresponding section in the
##'     documentation for more details.
##'
##' @param j `character()`, `logical()`, or `numeric()` vector for
##'     subsetting by `colData` rows.
##'
##' @param k `character()`, `logical()`, or `numeric()` vector for
##'     subsetting by assays
##'
##' @param value The values to use as a replacement. See the
##'     corresponding section in the documentation for more details.
##'
##' @param drop logical (default `TRUE`) whether to drop empty assay
##'     elements in the `ExperimentList`.
##'
##' @param ... See `MultiAssayExperiment` for details. For `plot`,
##'     further arguments passed to `igraph::plot.igraph`.
##'
##'
##'
##' @seealso
##'
##' - The [readQFeatures()] constructor and the [aggregateFeatures()]
##'   function. The *QFeatures* vignette provides an extended example.
##'
##' - The [QFeatures-filtering] manual page demonstrates how to filter
##'   features based on their rowData.
##'
##' - The [missing-data] manual page to manage missing values in
##'   `QFeatures` objects.
##'
##' - The [QFeatures-processing] and [aggregateFeatures()] manual pages
##'   and *Processing* vignette describe common quantitative data
##'   processing methods using in quantitative proteomics.
##'
##' @import MultiAssayExperiment ProtGenerics
##'
##' @name QFeatures
##'
##' @aliases QFeatures QFeatures-class class:QFeatures
##' @aliases addAssay
##' @aliases dims,QFeatures-method show,QFeatures-method
##' @aliases [,QFeatures,ANY,ANY,ANY-method [,QFeatures,character,ANY,ANY-method
##'
##' @aliases rowDataNames selectRowData
##'
##' @rdname QFeatures-class
##'
##' @exportClass QFeatures
##'
##' @author Laurent Gatto
##'
##' @examples
##' ## ------------------------
##' ## An empty QFeatures object
##' ## ------------------------
##'
##' QFeatures()
##'
##' ## -----------------------------------
##' ## Creating a QFeatures object manually
##' ## -----------------------------------
##'
##' ## two assays (matrices) with matching column names
##' m1 <- matrix(1:40, ncol = 4)
##' m2 <- matrix(1:16, ncol = 4)
##' sample_names <- paste0("S", 1:4)
##' colnames(m1) <- colnames(m2) <- sample_names
##' rownames(m1) <- letters[1:10]
##' rownames(m2) <- letters[1:4]
##'
##' ## two corresponding feature metadata with appropriate row names
##' df1 <- DataFrame(Fa = 1:10, Fb = letters[1:10],
##'                  row.names = rownames(m1))
##' df2 <- DataFrame(row.names = rownames(m2))
##'
##' (se1 <- SummarizedExperiment(m1, df1))
##' (se2 <- SummarizedExperiment(m2, df2))
##'
##' ## Sample annotation (colData)
##' cd <- DataFrame(Var1 = rnorm(4),
##'                 Var2 = LETTERS[1:4],
##'                 row.names = sample_names)
##'
##' el <- list(assay1 = se1, assay2 = se2)
##' fts1 <- QFeatures(el, colData = cd)
##' fts1
##' fts1[[1]]
##' fts1[["assay1"]]
##'
##' ## Rename assay
##' names(fts1) <- c("se1", "se2")
##'
##' ## Add an assay
##' fts1 <- addAssay(fts1, se1[1:2, ], name = "se3")
##'
##' ## Get the assays feature metadata
##' rowData(fts1)
##'
##' ## Keep only the Fa variable
##' selectRowData(fts1, rowvars = "Fa")
##'
##' ## -----------------------------------
##' ## See ?readQFeatures to create a
##' ## QFeatures object from a data.frame
##' ## or spreadsheet.
##' ## -----------------------------------
##'
NULL


## ----------------------------------
## QFeatures Class ChangeLog
##
## Version 0.1:
##  - Contains MatchedAssayExperiment
## Version 0.2:
##  - Contains MultiAssayExperiment (see issue 46)
## Version 0.3:
##  - Rename to QFeatures (see issue 89)

setClass("QFeatures",
         contains = "MultiAssayExperiment",
         slots = c(version = "character",
                   assayLinks = "AssayLinks"),
         prototype = prototype(
             version = "0.3"))

##' @export
##'
##' @rdname QFeatures-class
##'
##' @param assayLinks An optional [AssayLinks] object.
QFeatures <- function(..., assayLinks = NULL) {
    ans <- MultiAssayExperiment(...)
    if (isEmpty(ans)) assayLinks <- AssayLinks()
    else {
        if (is.null(assayLinks))
            assayLinks <- AssayLinks(names = names(ans))
    }
    new("QFeatures",
        ExperimentList = ans@ExperimentList,
        colData = ans@colData,
        sampleMap = ans@sampleMap,
        metadata = ans@metadata,
        assayLinks = assayLinks)
}


##' @rdname QFeatures-class
##'
##' @exportMethod show
setMethod("show", "QFeatures",
          function(object) {
              if (isEmpty(object)) {
                  cat(sprintf("A empty instance of class %s", class(object)), "\n")
                  return(NULL)
              }
              n <- length(object)
              cat(sprintf("An instance of class %s", class(object)), "containing", n, "set(s):")
              el <- experiments(object)
              o_class <- class(el)
              elem_cl <- vapply(el, class, character(1L))
              o_len <- length(el)
              o_names <- names(el)
              featdim <- vapply(el, FUN = function(obj) {
                  dim(obj)[1]
              }, FUN.VALUE = integer(1L))
              sampdim <- vapply(el, FUN = function(obj) {
                  dim(obj)[2]
              }, FUN.VALUE = integer(1L))
              if (n <= 7) {
                  cat(sprintf("\n [%i] %s: %s with %s rows and %s columns",
                              seq(o_len), o_names, elem_cl,
                              featdim, sampdim), "\n")
              } else {
                  cat(sprintf("\n [%i] %s: %s with %s rows and %s columns",
                              seq(o_len)[1:3], o_names[1:3], elem_cl[1:3],
                              featdim[1:3], sampdim[1:3]), "\n")
                  cat(" ...")
                  cat(sprintf("\n [%i] %s: %s with %s rows and %s columns",
                              seq(o_len)[(n-2):n], o_names[(n-2):n], elem_cl[(n-2):n],
                              featdim[(n-2):n], sampdim[(n-2):n]), "\n")
              }
          })


## Function that creates a plotly network graph from an igraph object
## @param graph An i graph object.
## @param coords A n vertices by 2 matrix with the coordinates of the
##     nodes.
##' @importFrom igraph get.edgelist layout_as_tree plot.igraph add_edges
##' @importFrom grDevices rgb
##'
.plotlyGraph <- function(graph, coords) {
    stopifnot(inherits(graph, "igraph"))
    ## Initialize plotly
    pl <- plotly::plot_ly()
    ## Add edges
    el <- get.edgelist(graph)
    if (nrow(el) > 0) {
        edge_coords <- sapply(1:nrow(el), function(i) {
            edge_coord <- c(coords[el[i, 1], 1],
                            coords[el[i, 1], 2],
                            coords[el[i, 2], 1],
                            coords[el[i, 2], 2])
        })
        pl <- plotly::add_segments(pl,
                                   x = edge_coords[1, ],
                                   y = edge_coords[2, ],
                                   xend = edge_coords[3, ],
                                   yend = edge_coords[4, ],
                                   line = list(color = "grey", width = 0.3,
                                               showarrow = TRUE))
    }
    ## Add nodes
    pl <- plotly::add_markers(pl,
                              x = coords[, 1], y = coords[, 2],
                              marker = list(color = rgb(0.8, 0.8, 0.8),
                                            size = 40),
                              text = names(V(graph)),
                              hoverinfo = "text")
    ## Add labels
    pl <- plotly::add_text(pl,
                           x = coords[, 1], y = coords[, 2],
                           hoverinfo = "text",
                           text = names(V(graph)))

    ## Edit plot plot
    axis <- list(title = "", showgrid = FALSE, showticklabels = FALSE, zeroline = FALSE)
    plotly::layout(pl,
                   xaxis = axis,
                   yaxis = axis,
                   showlegend = FALSE)
}

## Offset on the coordinates for better rendering when many assays
## have to be drawn
.offsetNodes <- function(coords) {
    lev <- coords[, 2]
    nlev <- length(unique(lev))
    ## Compute the step between levels, if only a single level the step=1
    step <- ifelse(nlev > 1, max(coords[, 2]) / (nlev - 1), 1)
    ## Custom margin between nodes so that the nodes are interleaved
    ## (pattern repeats every 6 node)
    mar <- c(1, 3, 5, 2, 4, 6) / 10
    for (i in unique(lev)) {
        sel <- lev == i
        ## Center x
        coords[sel, 1] <- coords[sel, 1] - mean(coords[sel, 1])
        ## Offset y
        mari <- rep(mar, length.out = sum(sel))
        mari <- mari - mean(mari)
        offset <- mari * step
        coords[sel, 2] <- coords[sel, 2] + offset
    }
    coords
}

##' @rdname QFeatures-class
##'
##' @param interactive A `logical(1)`. If `TRUE`, an interactive graph
##'     is generated using `plotly`. Else, a static plot using `igraph`
##'     is generated. We recommend interactive exploration when the
##'     `QFeatures` object contains more than 50 assays.
##'
##' @importFrom igraph make_graph layout_as_tree plot.igraph add_edges V
##' @export
plot.QFeatures <- function (x, interactive = FALSE, ...) {
    ## Check arguments
    if (!interactive & length(x) > 50)
        warning("The QFeatures object contains many assays. You may ",
                "want to consider creating an interactive plot (set ",
                "'interactive = TRUE')")
    ## Create the network graph
    graph <- make_graph(edges = character(0),
                        isolates = names(x))
    ## Add the edges = links between assays
    roots <- c()
    for (child in names(x)) {
        parents <- assayLink(x, child)@from
        for(parent in parents) {
            if (!is.na(parent)) {
                graph <- add_edges(graph, c(parent, child))
            } else {
                roots <- c(roots, child)
            }
        }
    }
    ## Tree layout
    coords <- layout_as_tree(graph, root = roots)
    coords <- .offsetNodes(coords)
    rownames(coords) <- names(V(graph))
    ## Perform plotting
    if (!interactive) {
        plot.igraph(graph, layout = coords, ...)
        return(invisible(NULL))
    } else {
        return(.plotlyGraph(graph, coords))
    }
}


## Function that prunes a `Hits` object from an `AssayLink` object,
## making sure that the `Hits` object is still valid with respect to
## a parent assay and its corresponding assay (self). The validity is
## ensured by removing missing features.
##
## @param hits A `Hits` object
## @param parent A `SummarizedExperiment` object or any object that
##     inherits from it. This is the assay that `hits` links from.
## @param self A `SummarizedExperiment` object or any object that
##     inherits from it. This is the assay that `hits` links to.
##
.pruneHits <- function(hits, parent, self) {
    ## Get the feature names in the parent and self assay
    featnParent <- rownames(parent)
    featnSelf <- rownames(self)
    ## Check which links are still in parent and self
    inParent <- mcols(hits)$names_from %in% featnParent
    inSelf <- mcols(hits)$names_to %in% featnSelf
    ## Remove lost feature links
    hits[inParent & inSelf, ]
}

## Function that prunes an `AssayLink` of a `QFeatures` object,
## making sure that the `AssayLink` object is still valid with respect
## to a given `QFeatures` object.
##
## @param al An `AssayLink` object
## @param object A `QFeatures` object. `al` will be adapted so that it
##     becomes valid when contained in `object`.
##
.pruneAssayLink <- function(al, object) {
    ## Identify lost assays that need to be pruned
    lost <- !al@from %in% names(object)
    ## Prune the links to assays in `@name`. When an assay is lost,
    ## the links to that assay are removed.
    if (all(lost)) { ## If all parent assays are lost, return an
        ## empty AssayLink
        al <- AssayLink(name = al@name)
        return(al)
    } else if (any(lost)) { ## If some parents are lost (only in case
        ## of multiple parents), remove the link to the lost parent(s)
        ## (`@from`) and subset the corresponding `Hits` object(s)
        al@from <- al@from[!lost]
        al@hits <- al@hits[!lost]
    }
    ## Prune the links to features in `@hits`. Even when an assay is
    ## not lost, some of its features might be lost and the
    ## corresponding `Hits` must be adapted.
    if (inherits(al@hits, "List")) { ## If the AssayLink contains a
        ## HitsList object, iterate through each `Hits` element.
        al@hits <- mendoapply(function(hits, parent) {
            .pruneHits(hits, parent, self = object[[al@name]])
        }, hits = al@hits, parent = experiments(object)[al@from])
    } else { ## If the AssayLink contains a single Hits object
        al@hits <- .pruneHits(hits = al@hits,
                              parent = object[[al@from]],
                              self = object[[al@name]])
    }
    al
}

## Function that prunes the `AssayLinks` of a `QFeatures` object,
## making sure that the `AssayLinks` object is still valid after
## `QFeatures` subsetting
##
## @param object A `QFeatures` object
##
.pruneAssayLinks <- function(object) {
    ## Subset the AssayLinks
    object@assayLinks <- object@assayLinks[names(object)]
    ## Removed lost links in each AssayLink object
    object@assayLinks <- endoapply(object@assayLinks,
                                   .pruneAssayLink, object = object)
    ## Check new AssaLinks are valid
    .validAssayLinks(object)
    object
}

##' @rdname QFeatures-class
##'
##' @importFrom methods callNextMethod
##'
##' @exportMethod [
setMethod("[", c("QFeatures", "ANY", "ANY", "ANY"),
          function(x, i, j, ..., drop = TRUE) {
              ## Subset the assays
              ans <- callNextMethod(x, i, j, ..., drop)

              ## Prune the AssayLinks so that the `QFeatures` object
              ## remains valid
              .pruneAssayLinks(ans)
          })

##' @rdname QFeatures-class
setMethod("[", c("QFeatures", "character", "ANY", "ANY"),
          function(x, i, j, k, ..., drop = TRUE) {
              if (missing(j)) j <- TRUE
              if (missing(k)) k <- TRUE
              subsetByFeature(x, i)[, j, k]
          })


##' @rdname QFeatures-class
##'
##' @name coerce-QFeatures
##'
##' @aliases coerce,MultiAssayExperiment,QFeatures-method
##'
##' @exportMethod coerce
##'
setAs("MultiAssayExperiment", "QFeatures", function(from) {
    QFeatures(experiments = experiments(from),
              colData = colData(from),
              sampleMap = sampleMap(from),
              metadata = metadata(from),
              drops = from@drops,
              assayLinks = AssayLinks(names = names(from)))
})

##' @rdname QFeatures-class
##'
##' @exportMethod c
setMethod("c", "QFeatures",
          function(x, ...) {
              ## Retrieve the assays to add
              args <- list(...)

              ## Check arguments
              if (any(sapply(args, inherits, "SummarizedExperiment")) ||
                  any(sapply(args, inherits, "List")) ||
                  any(sapply(args, is.list))) {
                  stop("Trying to combine a QFeatures object with objects that ",
                       "inherit from SummarizedExperiment, List, or ",
                       "list. Consider using 'addAssay()' instead.")
              } else if (any(sapply(args, class) == "MultiAssayExperiment")) {
                  stop("Trying to combine a QFeatures object with one ",
                       "or more MultiAssayExperiment objects. You must ",
                       "first coerce these objects to QFeatures using ",
                       "'as(object, \"QFeatures\")'.")
              } else if (!all(sapply(args, inherits, "QFeatures"))) {
                  args <- lapply(args, as, "QFeatures")
              }
              if(length(names(args)))
                  warning("Argument names are provided but will be ignored.")

              ## Combine the different slots
              el <- .combineAssays(x, args)
              cd <- .combineColData(x, args)
              al <- .combineAssayLinks(x, args)

              QFeatures(experiments = el,
                        colData = cd,
                        assayLinks = al)
          })

## Internal function to combine the assays of x with the assays of each
## element in y.
## @param x A QFeatures object
## @param y A list-like object where each element is expected to be a
##     QFeatures
.combineAssays <- function(x, y) {
    Reduce(c, lapply(y, experiments), init = experiments(x))
}

## Internal function to combine the colData of x with the colData of each
## element in y.
## @param x A QFeatures object
## @param y A list-like object where each element is expected to be a
##     QFeatures
.combineColData <- function(x, y) {
    if (!length(y)) return(x)
    out <- colData(x)
    err <- c()
    for (i in seq_along(y)) {
        yy <- colData(y[[i]])
        cn <- .checkDataConflict(out, yy)
        if (length(cn))
            err <- c(err, paste0(cn, " (in argument ", i + 1, ")"))
        out <- .transferData(out, yy)
    }
    if (length(err)) stop("Column(s) in the colData have conflicting ",
                          "information when combining the QFeatures ",
                          "objects. Problematic column(s): ",
                          paste(err, collapse = ", "))
    out
}

## Internal function to combine the AssayLinks of x with the AssayLinks
## of each element in y.
## @param x A QFeatures object
## @param y A list-like object where each element is expected to be a
##     QFeatures
.combineAssayLinks <- function(x, y) {
    Reduce(c, lapply(y, attr, "assayLinks"), init = x@assayLinks)
}

##' @rdname QFeatures-class
##'
##' @param use.names A `logical(1)` indicating if the names on x
##'     should be propagated to the returned matrix or vector.
##'
##' @importFrom BiocGenerics dims
##' @exportMethod dims
setMethod("dims", "QFeatures",
          function(x, use.names = TRUE)
              vapply(experiments(x), dim, USE.NAMES = use.names, integer(2)))

##' @rdname QFeatures-class
##' @importFrom BiocGenerics nrows
##' @exportMethod nrows
setMethod("nrows", "QFeatures",
          function(x, use.names = TRUE)
              vapply(experiments(x), nrow, USE.NAMES = use.names, integer(1)))

##' @rdname QFeatures-class
##' @importFrom BiocGenerics ncols
##' @exportMethod ncols
setMethod("ncols", "QFeatures",
          function(x, use.names = TRUE)
              vapply(experiments(x), ncol, USE.NAMES = use.names, integer(1)))

##' @rdname QFeatures-class
##'
##' @param use.names A `logical(1)` indicating whether the rownames of
##'     each assay should be propagated to the corresponding `rowData`.
##'
setMethod("rowData", "QFeatures",
          function(x, use.names = TRUE, ...) {
              List(lapply(experiments(x), function(xx)
                  mcols(xx, use.names = use.names, ...)))
          })

##' @rdname QFeatures-class
##'
##' @export
setReplaceMethod("rowData", c("QFeatures", "DataFrameList"),
                 function(x, value) {
                     i <- intersect(names(value), names(x))
                     if (!length(i)) {
                         warning("Could not find a common assay between ",
                                 "'names(value)' and names(object)")
                         return(x)
                     }
                     el <- experiments(x)
                     for (ii in i)
                         rowData(el[[ii]])[, colnames(value[[ii]])] <-
                         value[[ii]]
                     BiocGenerics:::replaceSlots(x,
                                                 ExperimentList = el,
                                                 check = FALSE)
                 })

##' @rdname QFeatures-class
##'
##' @export
setReplaceMethod("rowData", c("QFeatures", "ANY"),
                 function(x, value) {
                     value <- endoapply(value, as, "DataFrame")
                     value <- as(value, "List")
                     rowData(x) <- value
                     x
                 })

##' @rdname QFeatures-class
##'
##' @export
rbindRowData <- function(object, i)  {
    ## Extract the rowData and column names from the desired assay(s)
    rdlist <- rowData(object)[i]
    rdNames <- rowDataNames(object)[i]
    ## Get the common variables between the selected rowData
    commonCols <- Reduce(intersect, rdNames)
    if (!length(commonCols)) {
        warning("No common columns between rowData tables were found.")
        return(DataFrame())
    }
    ## Add assay and rowname to the rowData
    rdlist <- lapply(names(rdlist),
                     function(x) cbind(assay = x,
                                       rowname = rownames(rdlist[[x]]),
                                       rdlist[[x]][, commonCols]))
    ## Row bind all tables in one DataFrame
    rdlist <- do.call(rbind, rdlist)
    rownames(rdlist) <- NULL
    rdlist
}



##' @rdname QFeatures-class
##'
##' @param rowvars A `character()` with the names of the `rowData`
##'     variables (columns) to retain in any assay.
##'
##' @export
selectRowData <- function(x, rowvars) {
    stopifnot(inherits(x, "QFeatures"))
    rowvars <- as.character(rowvars)
    allvars <- unique(unlist(rowDataNames(x)))
    missingvars <- setdiff(rowvars, allvars)
    if (length(missingvars))
        message(length(missingvars), " missing/mis-typed rowvars.")
    for (i in seq_len(length(x))) {
        rd <- rowData(x[[i]])
        rowData(x[[i]]) <- rd[, colnames(rd) %in% rowvars, drop = FALSE]
    }
    x
}


##' @rdname QFeatures-class
##'
##' @importFrom Biobase fData
##'
##' @export
rowDataNames <- function(x) {
    stopifnot(inherits(x, "MultiAssayExperiment"))
    CharacterList(lapply(experiments(x),
                         function(xx) {
                             if (inherits(xx, "SummarizedExperiment"))
                                 colnames(rowData(xx))
                             else if (inherits(xx, "eSet"))
                                 colnames(Biobase::fData(xx))
                             else NA_character_
                         }))
}


##' @rdname QFeatures-class
##'
##' @exportMethod names<-
setReplaceMethod("names", c("QFeatures", "character"),
                 function(x, value) {
                     key_vals <- cbind(names(x), value)
                     x <-  callNextMethod(x, value)
                     names(x@assayLinks) <- value
                     for (i in seq_len(length(x))) {
                         al <- x@assayLinks[[i]]
                         al@name  <- unname(key_vals[key_vals[, 1] == al@name, 2])
                         if (!all(is.na(al@from)))
                             al@from <- unname(key_vals[key_vals[, 1] %in% al@from, 2])
                         x@assayLinks[[i]] <- al
                     }
                     x
                 })


##' @rdname QFeatures-class
##'
##' @param colvars A `character()` that selects column(s) in the
##'     `colData`.
##' @param index The assay indicator within each `SummarizedExperiment`
##'     object. A vector input is supported in the case that the
##'     `SummarizedExperiment` object(s) has more than one assay
##'     (default `1L`)
##'
##' @importFrom MultiAssayExperiment longFormat
##' @importFrom reshape2 melt
##'
##' @export
longFormat <- function(object,
                       colvars = NULL,
                       rowvars = NULL,
                       index = 1L) {
    if (!is.null(rowvars)) {
        rdNames <- rowDataNames(object)
        misNames <- sapply(rdNames,
                           function (x) any(!rowvars %in% x))
        ## Check that all required
        if (any(misNames))
            stop("Some 'rowvars' not found in assay(s): ",
                 paste0(names(misNames)[misNames], collapse = ", "))
        ## Get long format table with quantification values and colvars
        longDataFrame <-
            MultiAssayExperiment::longFormat(object, colvars, index)
        ## Get the required rowData
        rds <- lapply(rowData(object),
                      function(rd) rd[, rowvars, drop = FALSE])
        rds <- do.call(rbind, rds)
        ## Merge the rowData to the long table
        cbind(longDataFrame,
              rds[as.character(longDataFrame$rowname), , drop = FALSE])
    } else {
        ## If rowvars is null, return the MAE longFormat output
        MultiAssayExperiment::longFormat(object, colvars, index)
    }
}


##' @param y An object that inherits from `SummarizedExperiment` or a
##'     *named* list of assays. When `y` is a list, each element must
##'     inherit from a `SummarizedExperiment` and the names of the
##'     list are used as the names of the assays to add. Hence, the
##'     list names must be unique and cannot overlap with the names of
##'     the assays already present in `x`.
##'
##' @param name A `character(1)` naming the single assay. Ignored if
##'     `y` is a list of assays.
##'
##' @param assayLinks An optional [AssayLinks].
##'
##' @md
##'
##' @rdname QFeatures-class
##'
##' @export
addAssay <- function(x,
                     y,
                     name,
                     assayLinks) {
    ## Check arguments
    stopifnot(inherits(x, "QFeatures"))
    y <- .checkAssaysToInsert(y, x, name, replace = FALSE)

    ## Check (or create) assayLinks
    if (!missing(assayLinks)) {
        if (inherits(assayLinks, "AssayLink"))
            assayLinks <- AssayLinks(assayLinks)
        if (!identical(sort(names(assayLinks)), sort(names(y))))
            stop("'assayLinks' must be named after the assay(s) in 'y'.")
    } else {
        assayLinks <- AssayLinks(names = names(y))
    }

    ## Update the colData
    cd <- .updateColDataFromAssays(x, y)

    ## Add the assay to the ExperimentList
    ## NOTE: we replace using the `@` slot. Although not recommended,
    ## this bypasses the checks of all the elements (using
    ## `validObject`) in the ExperimentList as this is already
    ## performed when building the QFeatures object and `y` is checked
    ## at the beginning of the function. This leads to a reduction in
    ## computational time.
    el <- experiments(x)
    for (ii in names(y)) {
        el@listData[[ii]] <- y[[ii]]
    }

    ## Update the sampleMap
    smap <- MultiAssayExperiment:::.sampleMapFromData(cd, el)

    ## Update the AssayLinks
    al <- append(x@assayLinks, assayLinks)

    ## Update the QFeatures object with all the updated parts
    BiocGenerics:::replaceSlots(
        object = x,
        ExperimentList = el,
        colData = cd,
        sampleMap = smap,
        assayLinks = al,
        check = FALSE
    )
}

##' @md
##'
##' @rdname QFeatures-class
##'
##' @export
removeAssay <- function(x, i) {
    i <- .normIndex(x, i)
    x[, , !names(x) %in% i]
}

##' @md
##'
##' @rdname QFeatures-class
##'
##' @export
replaceAssay <- function(x,
                         y,
                         i) {
    ## Check arguments
    stopifnot(inherits(x, "QFeatures"))
    if (!missing(i)) i <- .normIndex(x, i)
    y <- .checkAssaysToInsert(y, x, i, replace = TRUE)

    ## Update the colData
    cd <- .updateColDataFromAssays(x, y)

    ## Replace the assay to the ExperimentList
    ## NOTE: we replace using the `@` slot. Although not recommended,
    ## this bypasses the checks of all the elements (using
    ## `validObject`) in the ExperimentList as this is already
    ## performed when building the QFeatures object. This leads to a
    ## reduction in computational time.
    el <- experiments(x)
    for (ii in names(y)) {
        el@listData[[ii]] <- y[[ii]]
    }

    ## Update the sampleMap
    smap <- MultiAssayExperiment:::.sampleMapFromData(cd, el)

    ## Update the AssayLinks
    al <- x@assayLinks
    allfrom <- lapply(al, function (x) x@from)
    for (ii in names(y)) {
        if (identical(sort(rownames(x[[ii]])),
                      sort(rownames(y[[ii]]))) &&
            identical(sort(colnames(x[[ii]])),
                      sort(colnames(y[[ii]]))))
            next()

        al[[ii]] <- AssayLink(ii)
        repl <- names(allfrom)[sapply(allfrom, function(x) any(x %in% ii))]
        for (jj in repl) {
            if (inherits(al[[jj]]@hits, "List")) {
                al[[jj]]@from <- al[[jj]]@from[al[[jj]]@from != ii]
                al[[jj]]@hits <- al[[jj]]@hits[names(al[[jj]]@hits) != ii]
                if (length(al[[jj]]@hits) == 1)
                    al[[jj]]@hits <- al[[jj]]@hits[[1]]
            } else {
                al[[jj]] <- AssayLink(jj)
            }
        }
    }
    if (!identical(al, x@assayLinks)) {
        warning("Links between assays were lost/removed during ",
                "replacement. See '?addAssayLink' to restore them ",
                "manually. ")
    }

    ## Update the QFeatures object with all the updated parts
    BiocGenerics:::replaceSlots(
        object = x,
        ExperimentList = el,
        colData = cd,
        sampleMap = smap,
        assayLinks = al,
        check = FALSE
    )
}

##' @rdname QFeatures-class
##'
##' @export
setReplaceMethod("[[", c("QFeatures", "ANY", "ANY", "ANY"),
                 function(x, i, j, ..., value) {
                     if (length(i) != 1)
                         stop("'x[[i]] <- value' does not allow multiple ",
                              "replacements. Consider using 'addAssay()', ",
                              "'replaceAssay()' or 'removeAssay()' instead.")
                     i <- .normIndex(x, i, allowAbsent = TRUE)
                     if (!missing(j) || length(list(...)))
                         stop("invalid replacement")
                     if (i %in% names(x)) {
                         if (is.null(value)) {
                             return(removeAssay(x = x, i = i))
                         } else {
                             return(replaceAssay(x = x, y = value, i = i))
                         }
                     } else {
                         return(addAssay(x = x, y = value, name = i))
                     }
                 })

## Internal function that normalize the assay indexing. In this
## context, normalization means that the returned assay index is a
## character() that complies to QFeatures assay selection.
##
## @param object A QFeatures object
##
## @param i A logical(), numeric(), factor() or character() that
##     selects an assay in object. When logical, the length of i must
##     be identical to the number of assays in object.
##
## @param allowAbsent A logical() indicating whether the i is allowed
##     to be absent from object. This argument is only applicable when
##     i is a character().
##
## @return A character() with assay names present in object, or new
##     assay names (when allowAbsent = FALSE).
.normIndex <- function(object, i, allowAbsent = FALSE) {
    if (is.logical(i) & length(i) != length(object))
        stop("The assay index ('i') is logical but its does not ",
             "match the number of assays in the QFeatures object.")
    if (is.factor(i)) i <- as.character(i)
    if (is.numeric(i) || is.logical(i))
        i <- names(object)[i]
    if (!length(i)) stop("No assay selected.")
    if (any(is.na(i)))
        stop("'i' has out of bounds entries")
    if (!allowAbsent & any(mis <- !i %in% names(object)))
        stop("The following assay(s) is/are not found:",
             paste(i[mis], collapse = ","))
    i
}

.checkAssaysToInsert <- function(y, x, name, replace = FALSE) {
    ## Convert y to a list, if not already a list and check content
    if (!is.list(y) && !inherits(y, "List")) {
        stopifnot(is.character(name))
        y <- structure(list(y), .Names = name[1])
    } else {
        if (!missing(name))
            warning("'y' is provided as a list, 'name' is ignored.")
        if (length(names(y)) != length(y))
            stop("When 'y' is a list, it must be a named List.")
    }
    ## Make sure the assays comply to the requirements
    sapply(y, validObject) ## throws an error if any assay is corrupt
    if (any(duplicated(names(y))))
        stop("Replacement names must be unique.")
    if (!replace && any(names(y) %in% names(x)))
        stop("One or more assay names are already present in 'x'. ",
             "See 'replaceAssay()' if you want to replace assays.")
    if (replace && !all(names(y) %in% names(x)))
        stop("One or more assay names are not in 'x'. See ",
             "'addAssay()' if you want to add assays.")
    if (!all(sapply(y, inherits, "SummarizedExperiment")))
        stop("The replacement object(s) should inherit from ",
             "SummarizedExperiment.")
    if (any(sapply(y, function(yy) any(duplicated(rownames(yy))))))
        stop("The replacement object(s) should have unique row names.")
    ## Return the valid y
    y
}

## Internal function that will add rows and eventually columns in the
## colData based on a new SummarizedExperiment object
##
## @param x An instance of class [QFeatures].
## @param y A list of SummarizedExperiments containing the colData
##     that must be adapted
##
## The function returns the updated colData.
##
.updateColDataFromAssays <- function(x, y) {
    cd <- colData(x)
    ## Make sure we do not override existing colData
    err <- c()
    for (i in names(y)) {
        cn <- .checkDataConflict(cd, colData(y[[i]]))
        if (length(cn))
            err <- c(err, paste0(cn, " (in ", i, ")"))
    }
    if (length(err) > 0) stop("Column(s) in the colData in y have ",
                              "conflicting information with the ",
                              "QFeatures colData. Problematic ",
                              "column(s): ", paste(err, collapse = ", "))

    ## Remove lost samples (in case of replacement)
    if (any(names(y) %in% names(x))) {
        cnOld <- cnNew <- colnames(x)
        repl <- names(y)[names(y) %in% names(x)]
        for (ii in repl)
            cnNew[[ii]] <- colnames(y[[ii]])
        oldSamples <- setdiff(unique(unlist(cnOld)),
                              unique(unlist(cnNew)))
        if (length(oldSamples))
            cd <- cd[!rownames(cd) %in% oldSamples, , drop = FALSE]
    }
    ## Perform the actual colData transfer
    for (i in names(y)) {
        cd <- .transferData(cd, colData(y[[i]]))
    }
    cd
}


## Internal function that checks for data clashes between 2 tables
##
## @param x and y are data tables (DataFrame or data.frame)
##
## returns a character vector with problematic column names where a
## clash was identified. Returns an empty character vector if no problem.
.checkDataConflict <- function (x, y) {
    rn <- intersect(rownames(x), rownames(y))
    cn <- intersect(colnames(x), colnames(y))
    if (length(rn) == 0 || length(cn) == 0) return(character(0))
    ## We consider a problem when:
    isProbl <- sapply(cn, function (ii) {
        ## i. the overlaping colData column are different
        !identical(x[rn, ii], y[rn, ii]) &&
            ## ii. the colData x is not all missing
            !all(is.na(x[rn, ii]))
    })
    ## Return the problematic column names
    cn[isProbl]
}

## Internal function the transfers the data of y into x taking new
## rows into account
## @param x and y are data tables
##
## returns a single table where y has been transfered into x
.transferData <- function(x, y) {
    ## Add new samples names to cd and fill with NA
    newSamples <- setdiff(rownames(y), rownames(x))
    if (length(newSamples)) {
        newCd <- DataFrame(row.names = newSamples)
        newCd[, colnames(x)] <- NA
        x <- rbind(x, newCd)
    }
    ## If coldata is available, add it to cd
    if (ncol(y) != 0) {
        x[rownames(y), colnames(y)] <- y
    }
    x
}

##' @param verbose logical (default FALSE) whether to print extra messages
##'
##' @rdname QFeatures-class
##'
##' @exportMethod updateObject
setMethod("updateObject", "QFeatures",
          function(object, ..., verbose = FALSE)
          {
              if (verbose)
                  message("updateObject(object = 'QFeatures')")
              ## Update slots that are specific to QFeatures
              object@assayLinks <- updateObject(object@assayLinks, ...,
                                                verbose = verbose)
              ## Update MAE slots
              callNextMethod()
          }
)


##' @param dims `numeric()` that defines the dimensions to consider to
##'     drop empty assays. 1 for rows (i.e. assays without any
##'     features) and 2 for columns (i.e. assays without any
##'     samples). Default is `1:2`. Any value other that 1 and/or 2
##'     will trigger an error.
##'
##' @rdname QFeatures-class
##'
##' @export
dropEmptyAssays <- function(object, dims = 1:2) {
    stopifnot(inherits(object, "QFeatures"))
    if (!all(dims %in% 1:2))
        stop("Argument 'dims' must be in '1:2'.")
    if (1 %in% dims)
        object <- object[, , nrows(object) > 0]
    if (2 %in% dims)
        object <- object[, , ncols(object) > 0]
    if (!length(object)) return(QFeatures())
    object
}
rformassspectrometry/QFeatures documentation built on Jan. 10, 2025, 10:53 a.m.