#' Functions and utilities for adjustment of LC-MS/metabolomics-specific biases
#'
#' @noRd
NULL
#' @title Linear model-based normalization of abundance matrices
#'
#' @description
#'
#' The `fit_lm` and `adjust_lm` functions facilitate linear model-based
#' normalization of abundance matrices. The expected noise in a numeric
#' data matrix can be modeled with a linear regression model using the
#' `fit_lm` function and the data can subsequently be adjusted using the
#' `adjust_lm` function (i.e., the modeled noise will be removed from the
#' abundance values). A typical use case would be to remove injection index
#' dependent signal drifts in a LC-MS derived metabolomics data:
#' a linear model of the form `y ~ injection_index` could be used to model
#' the measured abundances of each feature (each row in a data matrix) as a
#' function of the injection index in which a specific sample was measured
#' during the LC-MS measurement run. The fitted linear regression models
#' can subsequently be used to adjust the abundance matrix by removing
#' these dependencies from the data. This allows to perform signal
#' adjustments as described in (Wehrens et al. 2016).
#'
#' The two functions are described in more details below:
#'
#' `fit_lm` allows to fit a linear regression model (defined with parameter
#' `formula`) to each row of the numeric data matrix submitted with parameter
#' `y`. Additional covariates of the linear model defined in `formula` are
#' expected to be provided as columns in a `data.frame` supplied *via*
#' the `data` parameter.
#'
#' The linear model is expected to be defined by a formula starting with
#' `y ~ `. To model for example an injection index dependency of values in
#' `y` a formula `y ~ injection_index` could be used, with values for the
#' injection index being provided as a column `"injection_index"` in the
#' `data` data frame. `fit_lm` would thus fit this model to each row of
#' `y`.
#'
#' Linear models can be fitted either with the standard least squares of
#' [lm()] by setting `method = "lm"` (the default), or with the more robust
#' methods from the *robustbase* package with `method = "lmrob"`.
#'
#' `adjust_lm` can be used to adjust abundances in a data matrix `y` based
#' on linear regression models provided with parameter `lm`. Parameter `lm`
#' is expected to be a `list` of length equal to the number of rows of `y`,
#' each element being a linear model (i.e., a results from `lm` or `lmrob`).
#' Covariates for the model need to be provided as columns in a `data.frame`
#' provided with parameter `data`. The number of rows of that `data.frame`
#' need to match the number of columns of `y`. The function returns the
#' input matrix `y` with values in rows adjusted with the linear models
#' provided by `lm`. No adjustment is performed for rows for which the
#' respective element in `lm` is `NA`. See examples below for details or the
#' vignette for more examples, descriptions and information.
#'
#' @param BPPARAM parallel processing setup. See [bpparam()] for more
#' information. Parallel processing can improve performance especially
#' for `method = "lmrob"`.
#'
#' @param control a `list` speficying control parameters for `lmrob`. Only
#' used if `method = "lmrob"`. See help of `lmrob.control` in the
#' `robustbase` package for details. By default `control = NULL` the
#' *KS2014* settings are used and scale-finding iterations are increased
#' to 10000.
#'
#' @param data `data.frame` containing the covariates for the linear model
#' defined by `formula` (for `fit_lm`) or used in `lm` (for `adjust_lm`).
#' The number of rows has to match the number of columns of `y`.
#'
#' @param formula `formula` defining the model that should be fitted to the
#' data. See also [lm()] for more information. Formulas should begin
#' with `y ~ ` as values in rows of `y` will be defined as *y*. See
#' description of the `fit_lm` function for more information.
#'
#' @param lm `list` of linear models (as returned by `lm` or `lmrob`) such
#' as returned by the `fit_lm` function. The length of the list is
#' expected to match the number of rows of `y`, i.e., each element
#' should be a linear model to adjust the specific row, or `NA` to skip
#' adjustment for that particular row in `y`.
#'
#' @param method `character(1)` defining the linear regression function that
#' should be used for model fitting. Can be either `method = "lm"` (the
#' default) for standard least squares model fitting or `method = "lmrob"`
#' for a robust alternative defined in the *robustbase* package.
#'
#' @param model `logical(1)` whether the model frame are included in the
#' returned linear models. Passed to the `lm` or `lmrob` functions.
#'
#' @param minVals `numeric(1)` defining the minimum number of non-missing
#' values (per feature/row) required to perform the model fitting. For
#' rows in `y` for which fewer non-`NA` values are available no model
#' will be fitted and a `NA` will be reported instead.
#'
#' @param y for `fit_lm`: `matrix` of abundances on which the linear model
#' pefined with `formula` should be fitted. For `adjust_lm`: `matrix`
#' of abundances that should be adjusted using the models provided with
#' parameter `lm`.
#'
#' @param ... for `fit_lm`: additional parameters to be passed to the
#' downstream calls to `lm` or `lmrob`. For `adjust_lm`: ignored.
#'
#' @return
#' For `fit_lm`: a `list` with linear models (either of type *lm* or
#' *lmrob*) or length equal to the number of rows of `y`. `NA` is
#' reported for rows with too few non-missing data points (depending
#' on parameter `minValues`).
#' For `adjust_lm`: a numeric matrix (same dimensions as input matrix
#' `y`) with the values adjusted with the provided linear models.
#'
#' @export
#'
#' @author Johannes Rainer
#'
#' @importFrom BiocParallel SerialParam bplapply
#'
#' @importFrom methods is
#'
#' @references
#'
#' Wehrens R, Hageman JA, van Eeuwijk F, Kooke R, Flood PJ, Wijnker E,
#' Keurentjes JJ, Lommen A, van Eekelen HD, Hall RD Mumm R and de Vos RC.
#' Improved batch correction in untargeted MS-based metabolomics.
#' *Metabolomics* 2016; 12:88.
#'
#' @examples
#'
#' ## See also the vignette for more details and examples.
#'
#' ## Load a test matrix with abundances of features from a LC-MS experiment.
#' vals <- read.table(system.file("txt", "feature_values.txt",
#' package = "MetaboCoreUtils"), sep = "\t")
#' vals <- as.matrix(vals)
#'
#' ## Define a data.frame with the covariates to be used to model the noise
#' sdata <- data.frame(injection_index = seq_len(ncol(vals)))
#'
#' ## Fit a linear model describing the feature abundances as a
#' ## function of the index in which samples were injected during the LC-MS
#' ## run. We're fitting the model to log2 transformed data.
#' ## Note that such a model should **only** be fitted if the samples
#' ## were randomized, i.e. the injection index is independent of any
#' ## experimental covariate. Alternatively, the injection order dependent
#' ## signal drift could be estimated using QC samples (if they were
#' ## repeatedly injected) - see vignette for more details.
#' ii_lm <- fit_lm(y ~ injection_index, data = sdata, y = log2(vals))
#'
#' ## The result is a list of linear models
#' ii_lm[[1]]
#'
#' ## Plotting the data for one feature:
#' plot(x = sdata$injection_index, y = log2(vals[2, ]),
#' ylab = expression(log[2]~abundance), xlab = "injection index")
#' grid()
#' ## plot also the fitted model
#' abline(ii_lm[[2]], lty = 2)
#'
#' ## For this feature (row) a decreasing signal intensity with injection
#' ## index was observed (and modeled).
#'
#' ## For another feature an increasing intensity can be observed.
#' plot(x = sdata$injection_index, y = log2(vals[3, ]),
#' ylab = expression(log[2]~abundance), xlab = "injection index")
#' grid()
#' ## plot also the fitted model
#' abline(ii_lm[[3]], lty = 2)
#'
#' ## This trend can be removed from the data using the `adjust_lm` function
#' ## by providing the linear models descring the drift. Note that, because
#' ## we're adjusting log2 transformed data, the resulting abundances are
#' ## also in log2 scale.
#' vals_adj <- adjust_lm(log2(vals), data = sdata, lm = ii_lm)
#'
#' ## Plotting the data before (open circles) and after adjustment (filled
#' ## points)
#' plot(x = sdata$injection_index, y = log2(vals[2, ]),
#' ylab = expression(log[2]~abundance), xlab = "injection index")
#' points(x = sdata$injection_index, y = vals_adj[2, ], pch = 16)
#' grid()
#' ## Adding the line fitted through the raw data
#' abline(ii_lm[[2]], lty = 2)
#' ## Adding a line fitted through the adjusted data
#' abline(lm(vals_adj[2, ] ~ sdata$injection_index), lty = 1)
#' ## After adjustment there is no more dependency on injection index.
fit_lm <- function(formula, data, y, method = c("lm", "lmrob"), control = NULL,
minVals = ceiling(nrow(data) * 0.75), model = TRUE, ...,
BPPARAM = SerialParam()) {
requireNamespace("BiocParallel", quietly = TRUE)
method <- match.arg(method)
if (missing(formula) || !is(formula, "formula"))
stop("'formula' has to be defined and needs to be a formula")
if (missing(data) || !is.data.frame(data))
stop("'data' is required and has to be a data.frame")
if (missing(y) || !is.numeric(y))
stop("'y' has to be defined and needs to be either a numeric or matrix")
if (!is.matrix(y))
y <- matrix(y, nrow = 1)
if (ncol(y) != nrow(data))
stop("number columns of 'y' (or length of 'y') has to match number ",
"of rows of 'data'")
.check_formula(formula, data)
y <- lapply(seq_len(nrow(y)), function(i) y[i, ])
if (method == "lmrob") {
requireNamespace("robustbase", quietly = TRUE)
if (missing(control)) {
## Force use of the KS2014 settings in lmrob and increase the
## scale-finding iterations to avoid some of the warnings.
control <- robustbase::lmrob.control("KS2014")
control$maxit.scale <- 10000
control$k.max <- 10000
control$refine.tol <- 1e-7
}
res <- bplapply(y, FUN = .fit_lmrob, formula = formula,
data = data, minVals = minVals,
model = model, BPPARAM = BPPARAM,
control = control, ...)
} else
res <- bplapply(y, FUN = .fit_lm, formula = formula,
data = data, minVals = minVals,
model = model, BPPARAM = BPPARAM, ...)
res
}
#' Fit the model for a single row of data.
#'
#' @importFrom stats lm
#'
#' @noRd
.fit_lm <- function(y, formula, data, minVals, model = TRUE, ...) {
nna <- sum(!is.na(y))
if (nna >= minVals) {
data$y <- y
lm(formula = formula, data = data, model = model, ...)
} else NA
}
.fit_lmrob <- function(y, formula, data, minVals, model = TRUE, control, ...) {
nna <- sum(!is.na(y))
if (nna >= minVals) {
data$y <- y
robustbase::lmrob(formula = formula, data = data, model = model,
control = control, ...)
} else NA
}
.check_formula <- function(formula, data) {
vars <- all.vars(formula)
if (vars[1] != "y")
stop("'formula' should start with `y ~`")
if (!all(vars[-1L] %in% colnames(data)))
stop("All variables defined in 'formula' need to be present in 'data'")
}
#' @rdname fit_lm
#'
#' @export
adjust_lm <- function(y = matrix(), data = data.frame(), lm = list(), ...) {
if (length(lm)) {
if (!is.matrix(y)) stop("'y' is expected to be a numeric matrix")
if (!is.data.frame(data)) stop("'data' is expected to be a data.frame")
if (is(lm, "lm") || is(lm, "lmrob"))
lm <- list(lm)
if (length(lm) != nrow(y))
stop("Length of parameter 'lm' has to match number of rows of 'y'")
if (ncol(y) != nrow(data))
stop("Number of rows of 'data' and number of columns of 'y' have ",
"to match.")
## Note: no big gain by parallel processing here.
for (i in which(!is.na(lm))) {
y[i, ] <- .adjust_with_lm(y = y[i, ], data, lm[[i]])
}
}
y
}
#' Adjust values `y` based on the linear model provided with `lm`
#'
#' @param y `numeric` with abundances that should be adjusted.
#'
#' @param data `data.frame` with additional covariates for values in `y`. All
#' covariates from the model `lm` need to be present.
#'
#' @param lm linear model (`lm` or `lmrob`) with which the values in `y` should
#' be adjusted.
#'
#' @return `numeric` (same length than `y`) with the adjusted values.
#'
#' @author Johannes Rainer based on original code from Ron Wehrens from
#' https://github.com/rwehrens/BatchCorrMetabolomics
#'
#' @importFrom stats predict
#'
#' @noRd
.adjust_with_lm <- function(y, data, lm) {
if (length(lm) <= 1L) return(y)
data$y <- y
pred <- predict(lm, newdata = data)
y - pred + mean(lm$fitted.values + lm$residuals)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.