#' Protocol Deviations Domain
#'
#' @name Protocol Deviations Domain
#' @description The Protocol Deviations data of an ImmPort study is reformated to the CDISC SDTM
#' Protocol Deviations (DV) domain model, and is a list of 2 data frames containing 1) Protocol
#' Deviations data \code{\link{DV}} and 2) any supplemental Protocol Deviations data \code{\link{SUPPDV}}
NULL
#> NULL
# call to globalVariables to prevent from generating NOTE: no visible binding for global variable <variable name>
# this hack is to satisfy CRAN (http://stackoverflow.com/questions/9439256/how-can-i-handle-r-cmd-check-no-visible-binding-for-global-variable-notes-when)
globalVariables(c("DVSEQ", "QNAM", "QVAL", "DVRELAE", "DVREASON", "DVRESOL",
"DVCONT", "DVSTDY", "DVENDY"))
# Get Protocol Deviations data of a specific study
#
# The function \code{getProtocolDeviations} queries the ImmPort database for Protocol Deviations data and
# reformats it to the CDISC SDTM Protocol Deviations (DV) domain model
#
# @param data_src A connection handle to ImmPort (MySQL or SQLite) database instance or
# a directory handle to folder where study RDS files are located
# @param study_id Identifier of a specific study
# @return a list of 2 data frames containing 1) Protocol Deviations data \code{\link{DV}} and 2) any supplemental
# Protocol Deviations data \code{\link{SUPPDV}}
# @examples
# \dontrun{
# getProtocolDeviations(data_src, "SDY1")
# }
#' @importFrom DBI dbGetQuery
##' @importFrom plyr rename
#' @importFrom data.table as.data.table is.data.table .N :=
getProtocolDeviations <- function(data_src, study_id) {
cat("loading Protocol Deviations data....")
dv_cols <- c("STUDYID", "DOMAIN", "USUBJID", "DVSEQ", "DVTERM", "DVRELAE", "DVREASON", "DVRESOL",
"DVCONT", "DVSTDY", "DVENDY")
suppdv_cols <- c("STUDYID", "RDOMAIN", "USUBJID", "IDVAR", "IDVARVAL", "QNAM", "QLABEL", "QVAL")
sql_stmt <- paste("SELECT distinct
pd.study_accession,
\"DV\" as domain,
pd.subject_accession,
cast(0 as UNSIGNED INTEGER) as seq,
pd.deviation_description,
pd.is_adverse_event_related,
pd.reason_for_deviation,
pd.resolution_of_deviation,
pd.subject_continued_study,
pd.deviation_study_start_day,
pd.deviation_study_end_day
FROM protocol_deviation pd
WHERE pd.study_accession in ('", study_id, "')
ORDER BY pd.subject_accession", sep = "")
if ((class(data_src)[1] == 'MySQLConnection') ||
(class(data_src)[1] == 'SQLiteConnection')) {
dv_df <- dbGetQuery(data_src, statement = sql_stmt)
colnames(dv_df) <- dv_cols
suppdv_df <- data.frame()
if (nrow(dv_df) > 0) {
dv_df <- transform(dv_df, DVSEQ = as.integer(DVSEQ))
dv_dt <- as.data.table(dv_df)
if (is.data.table(dv_dt) == TRUE) {
dv_dt[, `:=`(DVSEQ, seq_len(.N)), by = "USUBJID"]
}
dv_df <- as.data.frame(dv_dt)
qnam_values = c("DVRELAE", "DVREASON", "DVRESOL", "DVCONT", "DVSTDY", "DVENDY")
qlabel_values= c("Is Deviation Related to an Adverse Event?", "Reason for Deviation",
"Resulotion of Deviation", "Did Subject continued in Study?",
"Study Day of Start of Deviation", "Study Day of End of Deviation")
suppdv_df <- reshape2::melt(dv_df, id = c("STUDYID", "DOMAIN", "USUBJID", "DVSEQ"),
measure = qnam_values,
variable.name = "QNAM",
value.name = "QVAL")
suppdv_df <- transform(suppdv_df, QLABEL = unlist(qlabel_values[QNAM]))
suppdv_df <- plyr::rename(suppdv_df, c("DOMAIN" = "RDOMAIN", "DVSEQ" = "IDVARVAL"))
suppdv_df$IDVAR <- "DVSEQ"
suppdv_df <- suppdv_df[suppdv_cols]
# remove rows that have empty QVAL values
suppdv_df <- subset(suppdv_df,QVAL!="")
dv_df <- subset(dv_df, select = -c(DVRELAE, DVREASON, DVRESOL, DVCONT, DVSTDY, DVENDY))
}
} else {
l <- loadSerializedStudyData(data_src, study_id, "Protocol Deviations")
dv_df <- l[[1]]
suppdv_df <- l[[2]]
}
cat("done", "\n")
dv_l <- list()
if (nrow(dv_df) > 0)
dv_l <- list(dv_df=dv_df, suppdv_df=suppdv_df)
dv_l
}
# Get count of Protocol Deviations data of a specific study
#
# The function \code{getCountOfProtocolDeviations} queries the ImmPort database for count
# of Protocol Deviations data
#
# @param conn A connection handle to ImmPort database instance
# @param study_id Identifier of a specific study
# @return a count of Protocol Deviations data
# @examples
# \dontrun{
# # get count of study SDY1's Protocol Deviations data
# count <- getCountOfProtocolDeviations(conn, "SDY1")
# }
getCountOfProtocolDeviations <- function(conn, study_id) {
sql_stmt <- paste("SELECT count(*)
FROM protocol_deviation pd
WHERE pd.study_accession in ('", study_id, "')", sep = "")
count <- dbGetQuery(conn, statement = sql_stmt)
count[1, 1]
}
##' Protocol Deviations Domain Variables
##' @name DV
##' @description {
##' \tabular{ll}{
##' \strong{Variable Name } \tab \strong{Variable Label} \cr
##' STUDYID \tab Study Identifier \cr
##' DOMAIN \tab Domain Abbreviation \cr
##' USUBJID \tab Unique Subject Identifier \cr
##' DVSEQ \tab Sequence Number \cr
##' DVTERM \tab Protocol Deviation Term
##' }
##' }
NULL
#> NULL
##' Protocol Deviations Domain Supplemental Variables
##' @name SUPPDV
##' @description {
##' \tabular{ll}{
##' \strong{Variable Name} \tab \strong{Variable Label} \cr
##' STUDYID \tab Study Identifier \cr
##' RDOMAIN \tab Related Domain Abbreviation \cr
##' USUBJID \tab Unique Subject Identifier \cr
##' IDVAR \tab Identifying Variable \cr
##' IDVARVAL \tab Identifying Variable Value \cr
##' QNAM \tab Qualifier Variable Name \cr
##' QLABEL \tab Qualifier Variable Label \cr
##' QVAL \tab Data Value
##' }
##' }
##' @note The following table enumerates the values in QNAM and QLABEL variables {
##' \tabular{ll}{
##' \strong{QNAM} \tab \strong{QLABEL} \cr
##' DVRELAE \tab Is Deviation Related to an Adverse Event? \cr
##' DVREASON \tab Reason for Deviation \cr
##' DVRESOL \tab Resulotion of Deviation \cr
##' DVCONT \tab Did Subject continued in Study? \cr
##' DVSTDY \tab Study Day of Start of Deviation \cr
##' DVENDY \tab Study Day of End of Deviation
##' }
##' }
NULL
#> NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.