#' Findings About Domain
#'
#' @name Findings About Domain
#' @description The Findings About data of an ImmPort study is reformated to the CDISC SDTM Findings
#' About (FA) domain model, and is a list of 2 data frames containing 1) Findings About data \code{\link{FA}}
#' and 2) any supplemental Findings About data \code{\link{SUPPFA}}
NULL
#> NULL
# call to globalVariables to prevent from generating NOTE: no visible binding for global variable <variable name>
# this hack is to satisfy CRAN (http://stackoverflow.com/questions/9439256/how-can-i-handle-r-cmd-check-no-visible-binding-for-global-variable-notes-when)
globalVariables(c("FASEQ", "QNAM", "QVAL", "FATOD"))
# Get Findings About data of a specific study
#
# The function \code{getFindingsAbout} queries the ImmPort database for Findings About data and
# reformats it to the CDISC SDTM Findings About (FA) domain model
#
# @param data_src A connection handle to ImmPort (MySQL or SQLite) database instance or
# a directory handle to folder where study RDS files are located
# @param study_id Identifier of a specific study
# @return a list of 2 data frames containing 1) Findings About data \code{\link{FA}} and 2) any supplemental
# Findings About data \code{\link{SUPPFA}}
# @examples
# \dontrun{
# getFindingsAbout(data_src, "SDY1")
# }
#' @importFrom DBI dbGetQuery
#' @importFrom plyr rename
#' @importFrom data.table as.data.table is.data.table .N :=
getFindingsAbout <- function(data_src, study_id) {
cat("loading Findings About data....")
fa_cols <- c("STUDYID", "DOMAIN", "USUBJID", "FASEQ", "FATEST", "FAOBJ", "FACAT",
"FAORRES", "FAORRESU", "FALOC", "FATOD", "VISITNUM", "VISIT", "FADY")
suppfa_cols <- c("STUDYID", "RDOMAIN", "USUBJID", "IDVAR", "IDVARVAL", "QNAM", "QLABEL", "QVAL")
sql_stmt <- paste("SELECT distinct
asm.study_accession,
\"FA\" as domain,
asm.subject_accession,
cast(0 as UNSIGNED INTEGER) as seq,
asm.component_name_reported,
asm.organ_or_body_system_reported,
asm.panel_name_reported,
asm.result_value_reported,
asm.result_unit_reported,
asm.location_of_finding_reported,
asm.time_of_day,
pv.order_number,
pv.visit_name,
asm.study_day
FROM assessment asm, planned_visit pv
WHERE (asm.study_accession in ('", study_id, "')) AND
(asm.assessment_type='Other') AND
(asm.planned_visit_accession = pv.planned_visit_accession)
ORDER BY asm.subject_accession", sep = "")
if ((class(data_src)[1] == 'MySQLConnection') ||
(class(data_src)[1] == 'SQLiteConnection')) {
fa_df <- dbGetQuery(data_src, statement = sql_stmt)
colnames(fa_df) <- fa_cols
suppfa_df <- data.frame()
if (nrow(fa_df) > 0) {
fa_df <- transform(fa_df, FASEQ = as.integer(FASEQ))
fa.dt <- as.data.table(fa_df)
if (is.data.table(fa.dt) == TRUE) fa.dt[, `:=`(FASEQ, seq_len(.N)), by = "USUBJID"]
fa_df <- as.data.frame(fa.dt)
qnam_values = c("FATOD")
qlabel_values= c("Time of Day")
suppfa_df <- reshape2::melt(fa_df, id = c("STUDYID", "DOMAIN", "USUBJID", "FASEQ"),
measure = qnam_values,
variable.name = "QNAM",
value.name = "QVAL")
suppfa_df <- transform(suppfa_df, QLABEL = unlist(qlabel_values[QNAM]))
suppfa_df <- plyr::rename(suppfa_df, c("DOMAIN" = "RDOMAIN", "FASEQ" = "IDVARVAL"))
suppfa_df$IDVAR <- "FASEQ"
suppfa_df <- suppfa_df[suppfa_cols]
# remove rows that have empty QVAL values
suppfa_df <- subset(suppfa_df,QVAL!="")
fa_df <- subset(fa_df, select = -c(FATOD))
}
} else {
l <- loadSerializedStudyData(data_src, study_id, "Exposure")
fa_df <- l[[1]]
suppfa_df <- l[[2]]
}
cat("done", "\n")
fa_l <- list()
if (nrow(fa_df) > 0)
fa_l <- list(fa_df=fa_df, suppfa_df=suppfa_df)
fa_l
}
# Get count of Findings About data of a specific study
#
# The function \code{getCountOfFindingsAbout} queries the ImmPort database for count
# of Findings About data
#
# @param conn A connection handle to ImmPort database instance
# @param study_id Identifier of a specific study
# @return a count of Findings About data
# @examples
# \dontrun{
# # get count of study SDY1's Findings About data
# count <- getCountOfFindingsAbout(conn, "SDY1")
# }
getCountOfFindingsAbout <- function(conn, study_id) {
sql_stmt <- paste("SELECT count(*)
FROM assessment asm
WHERE asm.study_accession in ('", study_id, "') AND
asm.assessment_type='Other'", sep = "")
count <- dbGetQuery(conn, statement = sql_stmt)
count[1, 1]
}
##' Findings About Domain Variables
##' @name FA
##' @description {
##' \tabular{ll}{
##' \strong{Variable Name } \tab \strong{Variable Label} \cr
##' STUDYID \tab Study Identifier \cr
##' DOMAIN \tab Domain Abbreviation \cr
##' USUBJID \tab Unique Subject Identifier \cr
##' FASEQ \tab Sequence Number \cr
##' FATEST \tab Findings About Test Name \cr
##' FAOBJ \tab Object of the Observation \cr
##' FACAT \tab Category for Findings About \cr
##' FAORRES \tab Results or Findings in Original Units \cr
##' FAORRESU \tab Original Units \cr
##' FALOC \tab Location of the Finding About \cr
##' VISITNUM \tab Visit Number \cr
##' VISIT \tab Visit Name \cr
##' FADY \tab Study Day of Collection
##' }
##' }
NULL
#> NULL
##' Findings About Domain Supplemental Variables
##' @name SUPPFA
##' @description {
##' \tabular{ll}{
##' \strong{Variable Name} \tab \strong{Variable Label} \cr
##' STUDYID \tab Study Identifier \cr
##' RDOMAIN \tab Related Domain Abbreviation \cr
##' USUBJID \tab Unique Subject Identifier \cr
##' FASEQ \tab Sequence Number \cr
##' IDVAR \tab Identifying Variable \cr
##' IDVARVAL \tab Identifying Variable Value \cr
##' QNAM \tab Qualifier Variable Name \cr
##' QLABEL \tab Qualifier Variable Label \cr
##' QVAL \tab Data Value
##' }
##' }
##' @note The following table enumerates the values in QNAM and QLABEL variables {
##' \tabular{ll}{
##' \strong{QNAM} \tab \strong{QLABEL} \cr
##' FATOD \tab Time of Day of Collection \cr
##' }
##' }
NULL
#> NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.