# Function for computing cluster, adapted from monocle package
#' @export
louvain_clus <- function (data, k = 20, weight = F, louvain_iter = 1, resolution = NULL,
random_seed = 0L, verbose = F, return_all = F, ...)
{
extra_arguments <- list(...)
cell_names <- row.names(data)
if (is.data.frame(data))
data <- as.matrix(data)
if (!is.matrix(data))
stop("Wrong input data, should be a data frame of matrix!")
if (k < 1) {
stop("k must be a positive integer!")
}
else if (k > nrow(data) - 2) {
stop("RANN counts the point itself, k must be smaller than\nthe total number of points - 1 (all other points) - 1 (itself)!")
}
if (verbose) {
message("Run kNN based graph clustering starts:", "\n",
" -Input data of ", nrow(data), " rows and ", ncol(data),
" columns", "\n", " -k is set to ", k)
}
if (verbose) {
cat(" Finding nearest neighbors...")
}
t1 <- system.time(tmp <- RANN::nn2(data, data, k + 1, searchtype = "standard"))
neighborMatrix <- tmp[[1]][, -1]
distMatrix <- tmp[[2]][, -1]
if (verbose) {
cat("DONE ~", t1[3], "s\n", " Compute jaccard coefficient between nearest-neighbor sets ...")
}
t2 <- system.time(links <- monocle:::jaccard_coeff(neighborMatrix,
weight))
if (verbose) {
cat("DONE ~", t2[3], "s\n", " Build undirected graph from the weighted links ...")
}
links <- links[links[, 1] > 0, ]
relations <- as.data.frame(links)
colnames(relations) <- c("from", "to", "weight")
relations$from <- cell_names[relations$from]
relations$to <- cell_names[relations$to]
t3 <- system.time(g <- igraph::graph.data.frame(relations,
directed = FALSE))
if (verbose) {
cat("DONE ~", t3[3], "s\n", " Run louvain clustering on the graph ...\n")
}
t_start <- Sys.time()
Qp <- -1
optim_res <- NULL
best_max_resolution <- "No resolution"
if (louvain_iter >= 2) {
random_seed <- NULL
}
for (iter in 1:louvain_iter) {
if (verbose) {
cat("Running louvain iteration ", iter, "...\n")
}
if (!is.null(resolution)) {
for (i in 1:length(resolution)) {
cur_resolution <- resolution[i]
louvain_args <- c(list(X = igraph::get.adjacency(g),
res = as.numeric(cur_resolution), random_seed = random_seed,
verbose = verbose), extra_arguments[names(extra_arguments) %in%
c("python_home", "partition_method", "initial_membership",
"weights", "node_sizes", "return_all")])
Q <- do.call(louvain_R, louvain_args)
Qt <- max(Q$modularity)
if (verbose) {
message("Current iteration is ", iter, "; current resolution is ",
cur_resolution, "; Modularity is ", Qt, "; Number of clusters are ",
max(Q$membership))
}
if (Qt > Qp) {
optim_res <- Q
Qp <- Qt
best_max_resolution <- cur_resolution
}
}
}
else {
Q <- igraph::cluster_louvain(g)
}
if (is.null(optim_res)) {
Qp <- max(Q$modularity)
optim_res <- Q
}
else {
Qt <- max(Q$modularity)
if (Qt > Qp) {
optim_res <- Q
Qp <- Qt
}
}
}
if (verbose)
message("Maximal modularity is ", Qp, "; corresponding resolution is ",
best_max_resolution)
t_end <- Sys.time()
if (verbose) {
message("\nRun kNN based graph clustering DONE, totally takes ",
t_end - t_start, " s.")
cat(" -Number of clusters:", length(unique(igraph::membership(optim_res))),
"\n")
}
if (igraph::vcount(g) < 3000) {
coord <- NULL
edge_links <- NULL
}
else {
coord <- NULL
edge_links <- NULL
}
V(g)$names <- as.character(V(g))
#return(list(g = g, relations = relations, distMatrix = distMatrix,
# coord = coord, edge_links = edge_links, optim_res = optim_res))
if(return_all) {
return(optim_res)
} else {
return(factor(igraph::membership(optim_res)))
}
}
#' @export
dens_clus<-function(tsne_data, rho_threshold=5, delta_threshold=10, peaks=NULL){
set.seed(1)
dataDist <- dist(tsne_data)
dataClust <- densityClust::densityClust(dataDist, gaussian = T)
dataClust <- densityClust::findClusters(dataClust,
rho = rho_threshold, delta = delta_threshold,
peaks = peaks)
return(factor(dataClust$clusters))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.