# Code from CellrangerRkit package
#' @export
runsSeq <- function(dat, group, fdata, order_by, p_cutoff, min_mean, min_log2fc) {
t_mat <- t(dat)
uni_labels <- sort(unique(group))
cat("Computing differential expression parameters...\n")
sseq_params <- compute_sseq_params2(t_mat)
ordered_genes <- lapply(uni_labels, function(cluster_label) {
de_result <- get_ordered_gene_list_sseq2(fdata, group,
cluster_label, sseq_params, t_mat)
de_result$ix <- 1:nrow(de_result)
de_result$id <- de_result$gene_id
de_result$symbol <- de_result$gene_name
de_result$significant <- with(de_result, common_mean >=
min_mean & p_adj < p_cutoff & log2fc >= min_log2fc)
if (order_by == "pvalue") {
ord <- order(with(de_result, ifelse(significant,
p, Inf)))
}
else if (order_by == "log2fc") {
ord <- order(-with(de_result, ifelse(significant,
log2fc, -Inf)))
}
de_result[ord, ]
})
names(ordered_genes) <- uni_labels
return(ordered_genes)
}
#' @export
compute_sseq_params2 <- function (x, zeta_quantile = 0.995)
{
params <- list()
N <- nrow(x)
G <- ncol(x)
grand_median <- median(rowSums(x))
s_ij <- rowSums(x)/grand_median
params$s_ij <- s_ij
x_size_norm <- x/s_ij
mu_g <- colMeans(x_size_norm)
v_g <- apply(x_size_norm, 2, var)
use_g <- v_g > 0
params$mu_g <- mu_g
params$v_g <- v_g
params$use_g <- use_g
phi_mm_g <- pmax(0, (N * v_g - mu_g * sum(1/s_ij))/(mu_g^2 *
sum(1/s_ij)))
params$phi_mm_g <- phi_mm_g
zeta_hat <- quantile(params$phi_mm_g, zeta_quantile, na.rm = T)
params$zeta_hat <- zeta_hat
mean_phi_mm_g <- mean(phi_mm_g[use_g])
delta <- (sum((phi_mm_g[use_g] - mean_phi_mm_g)^2)/(G - 1))/(sum((phi_mm_g[use_g] -
zeta_hat)^2)/(G - 2))
params$delta <- delta
phi_g <- rep(NA, G)
phi_g[use_g] <- (1 - delta) * phi_mm_g[use_g] + delta * zeta_hat
params$phi_g <- phi_g
params
}
#' @export
get_ordered_gene_list_sseq2 <- function (fdata, cluster_labels, test_ID, sseq_params, t_mat)
{
cat("Comparing Cluster", test_ID, "against the other clusters...\n")
group0 <- cluster_labels == test_ID
group1 <- cluster_labels != test_ID
de_result <- sseq_differential_expression2(t_mat, group0,
group1, sseq_params, gene_ids = fdata$id, gene_symbols = fdata$symbol)
return(de_result)
}
#' @export
sseq_differential_expression2 <- function (x, cond0, cond1, sseq_params, gene_ids, gene_symbols)
{
x_a <- x[cond0, , drop = F]
x_b <- x[cond1, , drop = F]
G <- ncol(x)
s_a <- sum(sseq_params$s_ij[cond0])
s_b <- sum(sseq_params$s_ij[cond1])
x_ga <- colSums(x_a)
x_gb <- colSums(x_b)
p_res <- rep(NA, G)
p_res[sseq_params$use_g] <- sapply(which(sseq_params$use_g),
function(g) nb_exact_test2(x_ga[g], x_gb[g], s_a, s_b,
sseq_params$mu_g[g], sseq_params$phi_g[g]))
p_adj <- rep(1, G)
p_adj[sseq_params$use_g] <- p.adjust(p_res[sseq_params$use_g],
method = "BH")
data.frame(gene_id = gene_ids, gene_name = gene_symbols,
tested = sseq_params$use_g, sum_a = x_ga, sum_b = x_gb,
common_mean = sseq_params$mu_g, dispersion = sseq_params$phi_g,
mean_a_sizenorm = x_ga/s_a, mean_b_sizenorm = x_gb/s_b,
log2fc = log2((1 + x_ga)/(1 + s_a)) - log2((1 + x_gb)/(1 +
s_b)), p = p_res, p_adj = p_adj)
}
#' @export
nb_exact_test2 <- function (x_a, x_b, s_a, s_b, mu, phi)
{
all_x_a <- seq(0, x_a + x_b, 1)
all_x_b <- seq(x_a + x_b, 0, -1)
.prob <- function(x, s) dnbinom(x, mu = s * mu, size = 1/(phi/s))
p_obs <- .prob(x_a, s_a) * .prob(x_b, s_b)
p_all <- .prob(all_x_a, s_a) * .prob(all_x_b, s_b)
sum(p_all[p_all <= p_obs])/sum(p_all)
}
#' @export
order_cell_by_clusters2 <- function (pmeta, clu)
{
uni_labels <- unique(clu) # Keep the order
sorted_clu_id <- sort(clu, index.return = TRUE)
index_list <- lapply(uni_labels, function(x) sorted_clu_id$ix[sorted_clu_id$x ==
x])
cell_info <- as.character(pmeta$barcode)
ordered_cells <- lapply(index_list, function(x) {
list(barcode = cell_info[x], ix = x)
})
names(ordered_cells) <- uni_labels
return(ordered_cells)
}
#' @export
gbm_pheatmap2 <- function (dat, genes_to_plot, cells_to_plot, n_genes = 50, group = NULL, group_colour = NULL, log = T, pseudocount = 1,
heatmap_color =colorRampPalette(rev(brewer.pal(n = 7, name = "RdYlBu")))(100),
limits = c(-3, 3), fontsize=10, scale = TRUE, cluster_rows = FALSE, cluster_cols = FALSE, clustering_distance_rows = "euclidean", clustering_method = "complete")
{
if (!is.list(genes_to_plot)) {
cat("Plotting one gene set instead of multiple cluster-specific gene sets\\n")
gene_indices <- match(genes_to_plot, rownames(dat))
gene_annotation <- NULL
}
else {
if ("significant" %in% names(genes_to_plot[[1]])) {
gene_indices <- unlist(lapply(genes_to_plot, function(x) with(x,
head(ix[significant], n_genes))))
gene_grouping <- unlist(lapply(names(genes_to_plot),
function(nm) rep(nm, with(genes_to_plot[[nm]],
length(head(ix[significant], n_genes))))))
}
else {
gene_indices <- unlist(lapply(genes_to_plot, function(x) x$ix[1:n_genes]))
gene_grouping <- rep(names(genes_to_plot), each = n_genes)
}
gene_annotation <- data.frame(ID = as.factor(gene_grouping))
}
gene_indices <- gene_indices[!is.na(gene_indices)]
if(is.null(cells_to_plot)) {
cell_indices <- 1:ncol(dat)
} else {
cell_indices <- unlist(lapply(cells_to_plot, function(x) x$ix))
}
if(log) {
value <- log10(dat[gene_indices, cell_indices]+pseudocount)
} else {
value <- dat[gene_indices, cell_indices]
}
if(scale) {
value <- t(scale(t(as.matrix(value))))
} else {
value <- as.matrix(dat)[gene_indices, cell_indices]
}
if(!is.null(limits)) {
value[value < limits[1]] <- limits[1]
value[value > limits[2]] <- limits[2]
}
rownames(value) <- make.unique(rownames(dat)[gene_indices])
if(!is.null(group)) {
cell_grouping <- as.character(group)
} else {
cell_grouping <- unlist(lapply(1:length(cells_to_plot), function(x) {
rep(names(cells_to_plot)[x], length(cells_to_plot[[x]]$barcode))
}))
}
if(!is.null(cell_grouping)){
cell_annotation <- data.frame(ID = cell_grouping)
rownames(cell_annotation) <- colnames(dat)
} else {
cell_annotation <- NULL
}
#assign("cell_annotation2", cell_annotation, env=.GlobalEnv)
#assign("value2", value, env=.GlobalEnv)
if (is.null(group_colour)) {
anno_colors <- NULL
} else {
anno_colors <- list(ID=group_colour)
}
value <- value[complete.cases(value),]
pheatmap::pheatmap(value,
color = heatmap_color,
cluster_rows = cluster_rows, cluster_cols = cluster_cols,
clustering_distance_rows = clustering_distance_rows, clustering_method = clustering_method,
show_colnames = FALSE, annotation_row = NULL,
annotation_col = cell_annotation, annotation_names_row = FALSE,
annotation_names_col = FALSE, annotation_colors = anno_colors, fontsize = fontsize)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.