R/plots_boxplot.R

Defines functions boxPlotD_HC

Documented in boxPlotD_HC

#' @title Builds a boxplot from a dataframe using the package \code{highcharter}
#' @param obj Numeric matrix
#' @param conds xxx
#' @param keyId xxxx
#' @param legend A vector of the conditions (one condition per sample).
#' @param pal A basis palette for the boxes which length must be equal
#' to the number of unique conditions in the dataset.
#' @param subset.view A vector of index indicating which rows to highlight
#' @return A boxplot
#' @author Samuel Wieczorek, Anais Courtier, Enora Fremy
#' @examples
#' data(Exp1_R25_prot, package="DAPARdata")
#' obj <- Exp1_R25_prot
#' conds <- legend <- Biobase::pData(obj)$Condition
#' key <- "Protein_IDs"
#' pal <- ExtendPalette(length(unique(conds)))
#' boxPlotD_HC(obj, conds, key, legend, pal, seq_len(10))
#' @import highcharter
#' @export
boxPlotD_HC <- function(
    obj,
    conds,
    keyId = NULL,
    legend = NULL,
    pal = NULL,
    subset.view = NULL) {
    pkgs.require(c('stats', "grDevices", "RColorBrewer"))
    

    if (is.null(obj)) {
        warning("The dataset is NULL and cannot be shown")
        return(NULL)
    } else if (nrow(obj) == 0) {
        warning("The dataset is empty and cannot be shown")
        return(NULL)
    } else {
        qData <- Biobase::exprs(obj)
    }


    pkgs.require('highcharter')

    if (missing(conds)) {
        stop("'conds' is missing.")
    }

    if (length(subset.view) == 0) {
        subset.view <- NULL
    }

    if (is.null(legend)) {
        legend <- conds
        for (i in unique(conds)) {
            legend[which(conds == i)] <- paste0(i, "_",
                seq_len(length(which(conds == i))))
        }
    }

    myColors <- NULL
    if (is.null(pal)) {
        warning("Color palette set to default.")
        myColors <- GetColorsForConditions(conds,
            ExtendPalette(length(unique(conds))))
    } else {
        if (length(pal) != length(unique(conds))) {
            warning("The color palette has not the same dimension as
                the number of samples")
            myColors <- GetColorsForConditions(conds,
                ExtendPalette(length(unique(conds))))
        } else {
            myColors <- GetColorsForConditions(conds, pal)
        }
    }


    if (!is.null(subset.view)) {
        if (is.null(keyId) || missing(keyId)) {
            stop("'keyId' is missing.")
        } else {
            if (!grep(keyId, colnames(Biobase::fData(obj)))) {
                stop("'keyId' does not belong to metadata")
            }
        }
    }



    add_variable_to_series_list <- function(x,
        series_list,
        key_vector,
        value_vector) {
        stopifnot(length(key_vector) == length(value_vector))
        stopifnot(length(series_list) == length(key_vector))
        series_list[[x]][length(series_list[[x]]) + 1] <- value_vector[x]
        names(series_list[[x]])[length(series_list[[x]])] <- key_vector[x]
        return(series_list[[x]])
    }


    # From highcharter github pages:
    hc_add_series_bwpout <- function(hc, value, by, ...) {
        z <- lapply(levels(by), function(x) {
            bpstats <- grDevices::boxplot.stats(value[by == x])$stats
            outliers <- c()
            for (y in stats::na.exclude(value[by == x])) {
                if ((y < bpstats[1]) | (y > bpstats[5])) {
                    outliers <- c(outliers, list(which(levels(by) == x) - 1, y))
                }
            }
            outliers
        })
        hc %>%
            hc_add_series(data = z, type = "scatter", ...)
    }


    gen_key_vector <- function(variable, num_times) {
        return(rep(variable, num_times))
    }


    gen_boxplot_series_from_df <- function(value, by, ...) {
        value <- base::as.numeric(value)
        by <- factor(by, levels = unique(by))
        box_names <- levels(by)

        z <- lapply(box_names, function(x) {
            grDevices::boxplot.stats(value[by == x])$stats
        })
        tmp <- lapply(seq_along(z), function(x) {
            var_name_list <- list(box_names[x])
            # tmp0<- list(names(df)[x])
            names(var_name_list) <- "name"
            index <- x - 1
            tmp <- list(c(index, z[[x]]))
            tmp <- list(tmp)
            names(tmp) <- "data"
            tmp_out <- c(var_name_list, tmp)
            # tmp<- list(tmp)
            return(tmp_out)
        })
        return(tmp)
    }



    ## Boxplot function:
    make_highchart_boxplot_with_colored_factors <- function(value,
        by,
        chart_title = "Boxplots",
        chart_x_axis_label = "Values",
        show_outliers = FALSE,
        boxcolors = NULL,
        box_line_colors = NULL) {
        # by <- as.factor(by)
        # box_names_to_use <- levels(by)
        by <- factor(by, levels = unique(by))
        box_names_to_use <- levels(by)
        series <- gen_boxplot_series_from_df(
            value = value,
            by = by
        )

        if (is.null(boxcolors)) {
            cols <- rep("#FFFFFF", ncol(qData))
            # Keeping alpha in here! (COLORS FOR BOXES ARE SET HERE)
            # cols<- viridisLite::viridis(n= length(series), alpha = 0.5) 
        } else {
            cols <- boxcolors
        }


        if (is.null(box_line_colors)) {
            if (nchar(cols[[1]]) == 9) {
                # no alpha, pure hex truth, for box lines
                cols2 <- substr(cols, 0, 7)
            } else {
                cols2 <- cols
            }
        } else {
            cols2 <- box_line_colors
        }

        # Injecting value 'fillColor' into series list
        kv <- gen_key_vector(variable = "fillColor", length(series))
        series2 <- lapply(seq_along(series), function(x) {
            add_variable_to_series_list(x = x, series_list = series,
                key_vector = kv, value_vector = cols)
        })


        hc <- highcharter::highchart() %>%
            highcharter::hc_chart(type = "boxplot", inverted = FALSE) %>%
            highcharter::hc_title(text = chart_title) %>%
            highcharter::hc_legend(enabled = FALSE) %>%
            highcharter::hc_xAxis(type = "category",
                categories = box_names_to_use,
                title = list(text = chart_x_axis_label)) %>%
            highcharter::hc_yAxis(title = list(text = "Log (intensity)")) %>%
            highcharter::hc_add_series_list(series2) %>%
            hc_plotOptions(series = list(
                marker = list(
                    symbol = "circle"
                ),
                grouping = FALSE
            )) %>%
            highcharter::hc_colors(cols2) %>%
            highcharter::hc_exporting(enabled = TRUE)



        if (show_outliers == TRUE) {
            hc <- hc %>%
                hc_add_series_bwpout(
                    value = value,
                    by = by,
                    name = "Outliers",
                    colorByPoint = TRUE
                    )
        }

        hc
    }



    df <- data.frame(cbind(
        categ = rep(colnames(qData), nrow(qData)),
        value = as.vector(apply(qData, 1, function(x) as.vector(x)))
    ))
    df$value <- as.numeric(df$value)
    hc <- make_highchart_boxplot_with_colored_factors(
        value = df$value,
        by = df$categ,
        chart_title = "",
        chart_x_axis_label = "Samples",
        show_outliers = TRUE,
        boxcolors = myColors,
        box_line_colors = "black"
    )

    # Display of rows to highlight (index of row in subset.view)
    if (!is.null(subset.view)) {
        idVector <- keyId
        pal <- ExtendPalette(length(subset.view), "Dark2")
        n <- 0
        for (i in subset.view) {
            n <- n + 1
            dfSubset <- data.frame(
                y = as.vector(qData[i, ], mode = "numeric"),
                x = as.numeric(factor(names(qData[i, ]))) - 1,
                stringsAsFactors = FALSE)
            hc <- hc %>%
                highcharter::hc_add_series(
                    type = "line",
                    data = dfSubset,
                    color = pal[n],
                    dashStyle = "shortdot",
                    name = Biobase::fData(obj)[i, keyId],
                    tooltip = list(enabled = TRUE,
                        headerFormat = "",
                        pointFormat = "{point.series.name} : {point.y: .2f} ")
                )
        }
    }

    hc
}
prostarproteomics/DAPAR documentation built on Oct. 11, 2024, 12:03 p.m.