R/mc6_mthds.R

Defines functions mc6_mthds

Documented in mc6_mthds

#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of  ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the    ##
## GNU General Public License for more details.                    ##
#####################################################################

#-------------------------------------------------------------------------------
# mc6_mthds: Load list of flag methods (to be used at level 6)
#-------------------------------------------------------------------------------

#' @name MC6_Methods
#' @title Load list of level 6 multiple-concentration flag methods
#'
#' @description
#' \code{mc6_mthds} returns a list of flag methods to be used
#' during level 6 multiple-concentration processing.
#'
#' @return A list functions
#'
#' @keywords internal
#' 
#' @seealso \code{\link{mc6}}, \code{\link{Method functions}} to query what
#' methods get applied to each aeid
#'
#' @section Available Methods:
#'
#' More information about the level 6 multiple-concentration processing is
#' available in the package vignette, "Pipeline_Overview."
#'
#' \describe{
#'   \item{row.dev.up}{The row.dev.up flag looks at the individual point data,
#'   searching for row effects across an apid. To get flagged the point has to
#'   be greater than 3 standard deviations above the mean response for the
#'   plate, and the row mean must be greater than 3 standard deviations above
#'   the row means for the plate.}
#'   \item{row.dev.dn}{The row.dev.dn flag is identical to the row.dev.up flag,
#'   but identifies points falling in rows with decreased signals.}
#'   \item{col.dev.up}{The col.dev.up flag is identical to the row.dev.up flag,
#'   but identifies points falling in columns with increased signals.}
#'   \item{col.dev.dn}{The col.dev.up flag is identical to the row.dev.up flag,
#'   but identifies points falling in columns with decreased signals.}
#'   \item{plate.flare}{The plate.flare flag looks at the individual point data,
#'   searching for overly active regions across an apid. Intended for use in
#'   fluorometric assays that are read by a plate-reader that measures the
#'   plate as a whole, rather than measuring individual wells. For each well
#'   the flare value is calculated as a weighted mean a 5 well by 5 well box
#'   centered on the well where the weight given to each well in the box is the
#'   euclidian distance from the center well. The flag then identifies points
#'   with flare values greater than 3 standard deviations above the mean flare
#'   values for the plate.}
#'   \item{plate.interlace}{The plate.interlace flag is specific to one
#'   experimental design that plates chemicals from a 386 well chemical plate
#'   to a 1536 well assay plate. The flag looks for any chemical-plate affects,
#'   by looking for an increased signal in the wells originating from the same
#'   chemical plate.}
#'   \item{rep.mismatch}{The rep.mismatch flag is still in development and is
#'   not suggested for use at this time.}
#'   \item{pintool}{Deprecated. The pintool flag uses a complicated algorithm
#'   to look for signal potentially caused by residual in the pintool used to
#'   deliver the chemical to assay plates in some experimental designs. The
#'   gnls.lowconc is a faster and simpler way to identify where this problem
#'   may be driving the activity or hit-call.}
#'   \item{singlept.hit.high}{The singlept.hit.high flag identifies
#'   concentration series where the median response was greater than 3*bmad
#'   only at the highest tested concentration and the series had an active
#'   hit-call.}
#'   \item{singlept.hit.mid}{The singlept.hit.mid flag identifies concentration
#'   series where the median response was greater than 3*bmad at only one
#'   concentration (not the highest tested concentration) and the series had
#'   an active hit-call.}
#'   \item{multipoint.neg}{The multipoint.neg flag identifies concentration
#'   series with response medians greater than 3*bmad at multiple
#'   concentrations and an inactive hit-call.}
#'   \item{gnls.lowconc}{The gnls.lowconc flag identifies concentration series
#'   where the gain-loss model won, the gain AC50 is less than the minimum
#'   tested concentration, and the loss AC50 is less than the mean tested
#'   concentration.}
#'   \item{noise}{The noise flag attempts to identify noisy concentration
#'   series by flagging series where the root mean square error for the series
#'   is greater than the cutoff for the assay endpoint.}
#'   \item{border.hit}{The border.hit flag identifies active concentration
#'   series where the top parameter of the winning model was less than or equal
#'   to 1.2*cut-off or the the activity probablity was less than 0.9.}
#'   \item{border.miss}{The border.miss flag identifies inactive concentration
#'   series where either the Hill or gain-loss top parameter was greater than
#'   or equal to 0.8*cut-off and the activity probability was greater than 0.5.}
#'   \item{overfit.hit}{The overfit.hit flag recalculates the model winner
#'   after applying a small sample correction factor to the AIC values. If the
#'   hit-call would be changed after applying the small sample correction
#'   factor the series is flagged. Series with less than 5 concentrations where
#'   the hill model won and series with less than 7 concentrations where the
#'   gain-loss model won are automatically flagged.}
#'   \item{efficacy.50}{The efficacy.50 flag identifies concentration series
#'   with efficacy values (either the modeled top parameter for the winning
#'   model or the maximum median response) are less than 50. Intended for use
#'   with biochemical assays where one might expect at least a 50\% change in
#'   real responses.}
#' }

mc6_mthds <- function() {

    list(

        row.dev.up=function(mthd) {

            flag <- "Row-wise effect, increased signal"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(
                    .(mthd), .(flag), NA_real_, "proportion", FALSE
                )
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(
                dr[wllt == "t",
                    rowm := mean(resp, na.rm=TRUE),
                    by=list(apid, rowi)]
            )
            e3 <- bquote(
                dr[wllt == "t",
                    athd := resp > mean(resp) + 3*sd(resp), by=apid]
            )
            e4 <- bquote(
                dr[wllt == "t",
                    test := rowm > mean(rowm) + 3*sd(rowm) & athd,
                    by=apid]
            )
            e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e6 <- bquote(dr[fval < 0.25, test := FALSE])
            e7 <- bquote(
                f[[.(mthd)]] <- dr[which(test), unique(.SD),
                    .SDcols=.(out)])
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit", "test", "rowm",
                "athd"
            )
            e8 <- bquote(dr[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6, e7, e8)

        },

        row.dev.dn=function(mthd) {

            flag <- "Row-wise effect, decreased signal"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(
                    .(mthd), .(flag),
                    NA_real_, "proportion", FALSE
                )
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(
                dr[wllt == "t",
                    rowm := mean(resp, na.rm=TRUE),
                    by=list(apid, rowi)]
            )
            e3 <- bquote(
                dr[wllt == "t",
                    athd := resp < mean(resp) - 3*sd(resp), by=apid]
            )
            e4 <- bquote(
                dr[wllt == "t",
                    test := rowm < mean(rowm) - 3*sd(rowm) & athd,
                    by=apid]
            )
            e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e6 <- bquote(dr[fval < 0.25, test := FALSE])
            e7 <- bquote(
                f[[.(mthd)]] <- dr[which(test),
                    unique(.SD),
                    .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit",
                "test", "rowm", "athd"
            )
            e8 <- bquote(dr[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6, e7, e8)

        },

        col.dev.up=function(mthd) {

            flag <- "Col-wise effect, increased signal"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(
                    .(mthd), .(flag),
                    NA_real_, "proportion", FALSE
                )
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(
                dr[wllt == "t",
                    colm := mean(resp, na.rm=TRUE),
                    by=list(apid, coli)]
            )
            e3 <- bquote(
                dr[wllt == "t",
                    athd := resp > mean(resp) + 3*sd(resp), by=apid]
            )
            e4 <- bquote(
                dr[wllt == "t",
                test := colm > mean(colm) + 3*sd(colm) & athd,
                by=apid]
            )
            e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e6 <- bquote(dr[fval < 0.25, test := FALSE])
            e7 <- bquote(
                f[[.(mthd)]] <- dr[which(test),
                    unique(.SD),
                    .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit",
                "test", "colm", "athd"
            )
            e8 <- bquote(dr[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6, e7, e8)

        },

        col.dev.dn=function(mthd) {

            flag <- "Col-wise effect, decreased signal"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(
                    .(mthd), .(flag),
                    NA_real_, "proportion", FALSE
                )
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(
                dr[wllt == "t",
                    colm := mean(resp, na.rm=TRUE),
                    by=list(apid, coli)]
            )
            e3 <- bquote(
                dr[wllt == "t",
                    athd := resp < mean(resp) - 3*sd(resp), by=apid]
            )
            e4 <- bquote(
                dr[wllt == "t",
                    test := colm < mean(colm) - 3*sd(colm) & athd,
                    by=apid]
            )
            e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e6 <- bquote(dr[fval < 0.25, test := FALSE])
            e7 <- bquote(
                f[[.(mthd)]] <- dr[which(test),
                    unique(.SD),
                    .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit",
                "test", "colm", "athd"
            )
            e8 <- bquote(dr[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6, e7, e8)

        },

        plate.flare=function(mthd) {

            flag <- "Includes potential flare region points"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(
                    .(mthd), .(flag),
                    NA_real_, "proportion", FALSE
                )
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(
                dr[wllt == "t",
                    flrv := flareFunc(resp, coli, rowi, apid, r=4)]
            )
            e3 <- bquote(
                dr[wllt == "t",
                    test := flrv > mean(flrv) + 3*sd(flrv)]
            )
            e4 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e5 <- bquote(dr[fval < 0.25, test := FALSE])
            e6 <- bquote(
                f[[.(mthd)]] <- dr[wllt == "t" & test & fval > 0.1,
                    unique(.SD), .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval",
                "fval_unit", "test", "flrv"
            )
            e7 <- bquote(dr[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6, e7)

        },

        plate.interlace=function(mthd) {

            flag <- "Includes potential chemical plate interlace points"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(
                    .(mthd), .(flag),
                    NA_real_, "proportion", FALSE
                )
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(
                dr[wllt == "t" & is.odd(coli) & is.odd(rowi),  intq := 1])
            e3 <- bquote(
                dr[wllt == "t" & !is.odd(coli) & is.odd(rowi),  intq := 2])
            e4 <- bquote(
                dr[wllt == "t" & is.odd(coli) & !is.odd(rowi),  intq := 3])
            e5 <- bquote(
                dr[wllt == "t" & !is.odd(coli) & !is.odd(rowi), intq := 4])
            e6 <- bquote(dr[wllt =="t", colj := ceiling(coli/2)])
            e7 <- bquote(dr[wllt =="t", rowj := ceiling(rowi/2)])
            e8 <- bquote(
                dr[wllt == "t",
                    intv := interlaceFunc(
                        val=resp,
                        intq=intq,
                        coli=colj,
                        rowi=rowj,
                        apid=apid,
                        r=3
                    )]
            )
            e9 <- bquote(
                dr[wllt == "t",
                    test := (intv > mean(intv) + 3*sd(intv))]
            )
            e10 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e11 <- bquote(dr[fval < 0.25, test := FALSE])
            e12 <- bquote(
                f[[.(mthd)]] <- dr[wllt == "t" & test & fval > 0.1,
                    unique(.SD),
                    .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit", "test",
                "intv", "intq", "colj", "rowj"
            )
            e13 <- bquote(dr[ , (.(cr)) := NULL])
            list(
                e1, e2, e3, e4, e5, e6, e7,
                e8, e9, e10, e11, e12, e13
            )

        },


        rep.mismatch=function(mthd) {

            flag <- "Replicate mismatch"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, "proportion", FALSE)
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2  <- bquote(
                dr[wllt == "t",
                    c("l4mn", "N") := list(mean(resp), .N), by=m4id]
            )
            e3  <- bquote(
                dr[wllt == "t",
                    excl.repmn := (l4mn * N - sum(resp)) / (N - .N),
                    by=list(m4id, repi)]
            )
            e4  <- bquote(
                dr[wllt == "t", repmn := mean(resp), by=list(m4id, repi)]
            )
            e5  <- bquote(
                dr[wllt == "t", repsd := sd(resp), by=list(m4id, repi)]
            )
            e6  <- bquote(dr[wllt == "t", t1 := excl.repmn > repmn + 2*repsd])
            e7  <- bquote(dr[wllt == "t", t2 := excl.repmn < repmn - 2*repsd])
            e8  <- bquote(dr[wllt == "t", test := t1 | t2])
            e9  <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e10 <- bquote(
                f[[.(mthd)]] <- dr[which(test),
                unique(.SD),
                .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit", "test", "l4mn",
                "N", "excl.repmn", "repsd", "repmn", "t1", "t2"
            )
            e11 <- bquote(dr[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6, e7, e8, e9)

        },

        pintool=function(mthd) {

            flag <- "Potential pintool carryover"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, "proportion", FALSE)
            )
            e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
            e2  <- bquote(
                dr[wllt == "t",
                    t1 := max(resp[cndx == 1]) > 9*bmad,
                    by=list(m4id, repi)]
            )
            e3  <- bquote(
                dr[wllt == "t",
                    t2 := max(resp[cndx == 2]) > 4.5*bmad,
                    by=list(m4id, repi)]
            )
            e4  <- bquote(
                dr[wllt == "t",
                    t3 := min(resp[cndx %in% 3:7]) < bmad,
                    by=list(m4id, repi)]
            )
            e5  <- bquote(dr[wllt == "t", incl := t1 & t2 & t3])
            e6  <- bquote(setkey(dr, cndx))
            e7  <- bquote(
                dr[wllt == "t" & incl,
                    test := all(
                        resp[cndx[seq_len(3)]] - 
                        resp[cndx[2:4]] > 0
                    ),
                    by=list(m4id, repi)]
            )
            e8  <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
            e9  <- bquote(
                f[[.(mthd)]] <- dr[which(test),
                    unique(.SD),
                    .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit", "test", "incl",
                "t1", "t2", "t3"
            )
            e10 <- bquote(dr[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)

        },

        singlept.hit.high=function(mthd) {

            flag <- "Only highest conc above baseline, active"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(ft[ , lstc := max_med_conc == logc_max])
            e3 <- bquote(ft[ , test := nmed_gtbl == 1 & hitc == 1 & lstc])
            e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "lstc")
            e5 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5)

        },

        singlept.hit.mid=function(mthd) {

            flag <- "Only one conc above baseline, active"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(ft[ , lstc := max_med_conc == logc_max])
            e3 <- bquote(ft[ , test := nmed_gtbl == 1 & hitc == 1 & !lstc])
            e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "lstc")
            e5 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5)

        },

        multipoint.neg=function(mthd) {

            flag <- "Multiple points above baseline, inactive"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(ft[ , test := nmed_gtbl > 1 & hitc == 0])
            e3 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
            e4 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4)

        },

        gnls.lowconc=function(mthd) {

            flag <- "Gain AC50 < lowest conc & loss AC50 < mean conc"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            conc_cols <- c("logc_max", "logc_min")
            e2 <- bquote(ft[ , cmen := rowMeans(.SD), .SDcols=.(conc_cols)])
            e3 <- bquote(ft[ , test := modl_ga < logc_min & modl_la < cmen])
            e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "cmen")
            e5 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5)

        },

        noise=function(mthd) {

            flag <- "Noisy data"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(ft[ , test := modl_rmse > coff])
            e3 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
            e4 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4)

        },

        border.hit=function(mthd) {

            flag <- "Borderline active"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(ft[ , t1 := actp < 0.9])
            e3 <- bquote(ft[ , t2 := modl_tp <= 1.2*coff | max_med <= 1.2*coff])
            e4 <- bquote(ft[ , test := hitc == 1 & (t1 | t2)])
            e5 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
            e6 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5, e6)

        },

        border.miss=function(mthd) {

            flag <- "Borderline inactive"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(
                ft[ , tp.8 := gnls_tp >= 0.8*coff | hill_tp >= 0.8*coff]
            )
            e3 <- bquote(ft[ , test := hitc == 0L & actp > 0.5 & tp.8])
            e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "tp.8")
            e5 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4, e5)

        },

        overfit.hit=function(mthd) {

            flag <- "Hit-call potentially confounded by overfitting"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1  <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2  <- bquote(
                ft[modl == "hill" & npts < 5 & hitc == 1, test := TRUE]
            )
            e3  <- bquote(
                ft[modl == "gnls" & npts < 7 & hitc == 1, test := TRUE]
            )
            e4  <- bquote(ft[npts > 1, cna := cnst_aic +  4/(npts - 2)])
            e5  <- bquote(ft[npts > 4, hna := hill_aic + 40/(npts - 4)])
            e6  <- bquote(ft[npts > 6, gna := gnls_aic + 84/(npts - 7)])
            e7  <- bquote(ft[ , nma := pmin(cna, hna, gna, na.rm=TRUE)])
            e8  <- bquote(ft[gna == nma, nmdl := "gnls"])
            e9  <- bquote(ft[hna == nma, nmdl := "hill"])
            e10 <- bquote(ft[cna == nma, nmdl := "cnst"])
            e11 <- bquote(ft[ , nhc := FALSE])
            e12 <- bquote(
                ft[nmdl == "hill" & hill_tp >= coff & max_med >= coff,
                    nhc := TRUE]
            )
            e13 <- bquote(
                ft[nmdl == "gnls" & gnls_tp >= coff & max_med >= coff,
                    nhc := TRUE]
            )
            e14 <- bquote(ft[hitc == 1 & !nhc, test := TRUE])
            e15 <- bquote(
                f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)]
            )
            cr <- c(
                "mc6_mthd_id", "flag", "fval", "fval_unit", "test",
                "cna", "hna", "gna", "nma", "nmdl", "nhc"
            )
            e16 <- bquote(ft[ , (.(cr)) := NULL])
            list(
                e1, e2, e3, e4, e5, e6, e7, e8, e9, e10,
                e11, e12, e13, e14, e15, e16
            )

        },

        efficacy.50=function(mthd) {

            flag <- "Biochemical assay with < 50% efficacy"
            out  <- c(
                "m5id", "m4id", "aeid", "mc6_mthd_id",
                "flag", "fval", "fval_unit"
            )
            init <- bquote(
                list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
            )
            e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
            e2 <- bquote(ft[hitc == 1, test := modl_tp < 50 | max_med < 50])
            e3 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
            cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
            e4 <- bquote(ft[ , (.(cr)) := NULL])
            list(e1, e2, e3, e4)

        }

    )

}

#-------------------------------------------------------------------------------
pmpsa-hpc/GladiaTOX documentation built on Sept. 1, 2023, 5:52 p.m.