#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##
## GNU General Public License for more details. ##
#####################################################################
#-------------------------------------------------------------------------------
# mc6_mthds: Load list of flag methods (to be used at level 6)
#-------------------------------------------------------------------------------
#' @name MC6_Methods
#' @title Load list of level 6 multiple-concentration flag methods
#'
#' @description
#' \code{mc6_mthds} returns a list of flag methods to be used
#' during level 6 multiple-concentration processing.
#'
#' @return A list functions
#'
#' @keywords internal
#'
#' @seealso \code{\link{mc6}}, \code{\link{Method functions}} to query what
#' methods get applied to each aeid
#'
#' @section Available Methods:
#'
#' More information about the level 6 multiple-concentration processing is
#' available in the package vignette, "Pipeline_Overview."
#'
#' \describe{
#' \item{row.dev.up}{The row.dev.up flag looks at the individual point data,
#' searching for row effects across an apid. To get flagged the point has to
#' be greater than 3 standard deviations above the mean response for the
#' plate, and the row mean must be greater than 3 standard deviations above
#' the row means for the plate.}
#' \item{row.dev.dn}{The row.dev.dn flag is identical to the row.dev.up flag,
#' but identifies points falling in rows with decreased signals.}
#' \item{col.dev.up}{The col.dev.up flag is identical to the row.dev.up flag,
#' but identifies points falling in columns with increased signals.}
#' \item{col.dev.dn}{The col.dev.up flag is identical to the row.dev.up flag,
#' but identifies points falling in columns with decreased signals.}
#' \item{plate.flare}{The plate.flare flag looks at the individual point data,
#' searching for overly active regions across an apid. Intended for use in
#' fluorometric assays that are read by a plate-reader that measures the
#' plate as a whole, rather than measuring individual wells. For each well
#' the flare value is calculated as a weighted mean a 5 well by 5 well box
#' centered on the well where the weight given to each well in the box is the
#' euclidian distance from the center well. The flag then identifies points
#' with flare values greater than 3 standard deviations above the mean flare
#' values for the plate.}
#' \item{plate.interlace}{The plate.interlace flag is specific to one
#' experimental design that plates chemicals from a 386 well chemical plate
#' to a 1536 well assay plate. The flag looks for any chemical-plate affects,
#' by looking for an increased signal in the wells originating from the same
#' chemical plate.}
#' \item{rep.mismatch}{The rep.mismatch flag is still in development and is
#' not suggested for use at this time.}
#' \item{pintool}{Deprecated. The pintool flag uses a complicated algorithm
#' to look for signal potentially caused by residual in the pintool used to
#' deliver the chemical to assay plates in some experimental designs. The
#' gnls.lowconc is a faster and simpler way to identify where this problem
#' may be driving the activity or hit-call.}
#' \item{singlept.hit.high}{The singlept.hit.high flag identifies
#' concentration series where the median response was greater than 3*bmad
#' only at the highest tested concentration and the series had an active
#' hit-call.}
#' \item{singlept.hit.mid}{The singlept.hit.mid flag identifies concentration
#' series where the median response was greater than 3*bmad at only one
#' concentration (not the highest tested concentration) and the series had
#' an active hit-call.}
#' \item{multipoint.neg}{The multipoint.neg flag identifies concentration
#' series with response medians greater than 3*bmad at multiple
#' concentrations and an inactive hit-call.}
#' \item{gnls.lowconc}{The gnls.lowconc flag identifies concentration series
#' where the gain-loss model won, the gain AC50 is less than the minimum
#' tested concentration, and the loss AC50 is less than the mean tested
#' concentration.}
#' \item{noise}{The noise flag attempts to identify noisy concentration
#' series by flagging series where the root mean square error for the series
#' is greater than the cutoff for the assay endpoint.}
#' \item{border.hit}{The border.hit flag identifies active concentration
#' series where the top parameter of the winning model was less than or equal
#' to 1.2*cut-off or the the activity probablity was less than 0.9.}
#' \item{border.miss}{The border.miss flag identifies inactive concentration
#' series where either the Hill or gain-loss top parameter was greater than
#' or equal to 0.8*cut-off and the activity probability was greater than 0.5.}
#' \item{overfit.hit}{The overfit.hit flag recalculates the model winner
#' after applying a small sample correction factor to the AIC values. If the
#' hit-call would be changed after applying the small sample correction
#' factor the series is flagged. Series with less than 5 concentrations where
#' the hill model won and series with less than 7 concentrations where the
#' gain-loss model won are automatically flagged.}
#' \item{efficacy.50}{The efficacy.50 flag identifies concentration series
#' with efficacy values (either the modeled top parameter for the winning
#' model or the maximum median response) are less than 50. Intended for use
#' with biochemical assays where one might expect at least a 50\% change in
#' real responses.}
#' }
mc6_mthds <- function() {
list(
row.dev.up=function(mthd) {
flag <- "Row-wise effect, increased signal"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(
.(mthd), .(flag), NA_real_, "proportion", FALSE
)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t",
rowm := mean(resp, na.rm=TRUE),
by=list(apid, rowi)]
)
e3 <- bquote(
dr[wllt == "t",
athd := resp > mean(resp) + 3*sd(resp), by=apid]
)
e4 <- bquote(
dr[wllt == "t",
test := rowm > mean(rowm) + 3*sd(rowm) & athd,
by=apid]
)
e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e6 <- bquote(dr[fval < 0.25, test := FALSE])
e7 <- bquote(
f[[.(mthd)]] <- dr[which(test), unique(.SD),
.SDcols=.(out)])
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit", "test", "rowm",
"athd"
)
e8 <- bquote(dr[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6, e7, e8)
},
row.dev.dn=function(mthd) {
flag <- "Row-wise effect, decreased signal"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(
.(mthd), .(flag),
NA_real_, "proportion", FALSE
)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t",
rowm := mean(resp, na.rm=TRUE),
by=list(apid, rowi)]
)
e3 <- bquote(
dr[wllt == "t",
athd := resp < mean(resp) - 3*sd(resp), by=apid]
)
e4 <- bquote(
dr[wllt == "t",
test := rowm < mean(rowm) - 3*sd(rowm) & athd,
by=apid]
)
e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e6 <- bquote(dr[fval < 0.25, test := FALSE])
e7 <- bquote(
f[[.(mthd)]] <- dr[which(test),
unique(.SD),
.SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit",
"test", "rowm", "athd"
)
e8 <- bquote(dr[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6, e7, e8)
},
col.dev.up=function(mthd) {
flag <- "Col-wise effect, increased signal"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(
.(mthd), .(flag),
NA_real_, "proportion", FALSE
)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t",
colm := mean(resp, na.rm=TRUE),
by=list(apid, coli)]
)
e3 <- bquote(
dr[wllt == "t",
athd := resp > mean(resp) + 3*sd(resp), by=apid]
)
e4 <- bquote(
dr[wllt == "t",
test := colm > mean(colm) + 3*sd(colm) & athd,
by=apid]
)
e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e6 <- bquote(dr[fval < 0.25, test := FALSE])
e7 <- bquote(
f[[.(mthd)]] <- dr[which(test),
unique(.SD),
.SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit",
"test", "colm", "athd"
)
e8 <- bquote(dr[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6, e7, e8)
},
col.dev.dn=function(mthd) {
flag <- "Col-wise effect, decreased signal"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(
.(mthd), .(flag),
NA_real_, "proportion", FALSE
)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t",
colm := mean(resp, na.rm=TRUE),
by=list(apid, coli)]
)
e3 <- bquote(
dr[wllt == "t",
athd := resp < mean(resp) - 3*sd(resp), by=apid]
)
e4 <- bquote(
dr[wllt == "t",
test := colm < mean(colm) - 3*sd(colm) & athd,
by=apid]
)
e5 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e6 <- bquote(dr[fval < 0.25, test := FALSE])
e7 <- bquote(
f[[.(mthd)]] <- dr[which(test),
unique(.SD),
.SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit",
"test", "colm", "athd"
)
e8 <- bquote(dr[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6, e7, e8)
},
plate.flare=function(mthd) {
flag <- "Includes potential flare region points"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(
.(mthd), .(flag),
NA_real_, "proportion", FALSE
)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t",
flrv := flareFunc(resp, coli, rowi, apid, r=4)]
)
e3 <- bquote(
dr[wllt == "t",
test := flrv > mean(flrv) + 3*sd(flrv)]
)
e4 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e5 <- bquote(dr[fval < 0.25, test := FALSE])
e6 <- bquote(
f[[.(mthd)]] <- dr[wllt == "t" & test & fval > 0.1,
unique(.SD), .SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval",
"fval_unit", "test", "flrv"
)
e7 <- bquote(dr[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6, e7)
},
plate.interlace=function(mthd) {
flag <- "Includes potential chemical plate interlace points"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(
.(mthd), .(flag),
NA_real_, "proportion", FALSE
)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t" & is.odd(coli) & is.odd(rowi), intq := 1])
e3 <- bquote(
dr[wllt == "t" & !is.odd(coli) & is.odd(rowi), intq := 2])
e4 <- bquote(
dr[wllt == "t" & is.odd(coli) & !is.odd(rowi), intq := 3])
e5 <- bquote(
dr[wllt == "t" & !is.odd(coli) & !is.odd(rowi), intq := 4])
e6 <- bquote(dr[wllt =="t", colj := ceiling(coli/2)])
e7 <- bquote(dr[wllt =="t", rowj := ceiling(rowi/2)])
e8 <- bquote(
dr[wllt == "t",
intv := interlaceFunc(
val=resp,
intq=intq,
coli=colj,
rowi=rowj,
apid=apid,
r=3
)]
)
e9 <- bquote(
dr[wllt == "t",
test := (intv > mean(intv) + 3*sd(intv))]
)
e10 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e11 <- bquote(dr[fval < 0.25, test := FALSE])
e12 <- bquote(
f[[.(mthd)]] <- dr[wllt == "t" & test & fval > 0.1,
unique(.SD),
.SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit", "test",
"intv", "intq", "colj", "rowj"
)
e13 <- bquote(dr[ , (.(cr)) := NULL])
list(
e1, e2, e3, e4, e5, e6, e7,
e8, e9, e10, e11, e12, e13
)
},
rep.mismatch=function(mthd) {
flag <- "Replicate mismatch"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, "proportion", FALSE)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t",
c("l4mn", "N") := list(mean(resp), .N), by=m4id]
)
e3 <- bquote(
dr[wllt == "t",
excl.repmn := (l4mn * N - sum(resp)) / (N - .N),
by=list(m4id, repi)]
)
e4 <- bquote(
dr[wllt == "t", repmn := mean(resp), by=list(m4id, repi)]
)
e5 <- bquote(
dr[wllt == "t", repsd := sd(resp), by=list(m4id, repi)]
)
e6 <- bquote(dr[wllt == "t", t1 := excl.repmn > repmn + 2*repsd])
e7 <- bquote(dr[wllt == "t", t2 := excl.repmn < repmn - 2*repsd])
e8 <- bquote(dr[wllt == "t", test := t1 | t2])
e9 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e10 <- bquote(
f[[.(mthd)]] <- dr[which(test),
unique(.SD),
.SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit", "test", "l4mn",
"N", "excl.repmn", "repsd", "repmn", "t1", "t2"
)
e11 <- bquote(dr[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6, e7, e8, e9)
},
pintool=function(mthd) {
flag <- "Potential pintool carryover"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, "proportion", FALSE)
)
e1 <- bquote(dr[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
dr[wllt == "t",
t1 := max(resp[cndx == 1]) > 9*bmad,
by=list(m4id, repi)]
)
e3 <- bquote(
dr[wllt == "t",
t2 := max(resp[cndx == 2]) > 4.5*bmad,
by=list(m4id, repi)]
)
e4 <- bquote(
dr[wllt == "t",
t3 := min(resp[cndx %in% 3:7]) < bmad,
by=list(m4id, repi)]
)
e5 <- bquote(dr[wllt == "t", incl := t1 & t2 & t3])
e6 <- bquote(setkey(dr, cndx))
e7 <- bquote(
dr[wllt == "t" & incl,
test := all(
resp[cndx[seq_len(3)]] -
resp[cndx[2:4]] > 0
),
by=list(m4id, repi)]
)
e8 <- bquote(dr[ , fval := lw(test)/.N, by=m4id])
e9 <- bquote(
f[[.(mthd)]] <- dr[which(test),
unique(.SD),
.SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit", "test", "incl",
"t1", "t2", "t3"
)
e10 <- bquote(dr[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)
},
singlept.hit.high=function(mthd) {
flag <- "Only highest conc above baseline, active"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(ft[ , lstc := max_med_conc == logc_max])
e3 <- bquote(ft[ , test := nmed_gtbl == 1 & hitc == 1 & lstc])
e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "lstc")
e5 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5)
},
singlept.hit.mid=function(mthd) {
flag <- "Only one conc above baseline, active"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(ft[ , lstc := max_med_conc == logc_max])
e3 <- bquote(ft[ , test := nmed_gtbl == 1 & hitc == 1 & !lstc])
e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "lstc")
e5 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5)
},
multipoint.neg=function(mthd) {
flag <- "Multiple points above baseline, inactive"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(ft[ , test := nmed_gtbl > 1 & hitc == 0])
e3 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
e4 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4)
},
gnls.lowconc=function(mthd) {
flag <- "Gain AC50 < lowest conc & loss AC50 < mean conc"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
conc_cols <- c("logc_max", "logc_min")
e2 <- bquote(ft[ , cmen := rowMeans(.SD), .SDcols=.(conc_cols)])
e3 <- bquote(ft[ , test := modl_ga < logc_min & modl_la < cmen])
e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "cmen")
e5 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5)
},
noise=function(mthd) {
flag <- "Noisy data"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(ft[ , test := modl_rmse > coff])
e3 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
e4 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4)
},
border.hit=function(mthd) {
flag <- "Borderline active"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(ft[ , t1 := actp < 0.9])
e3 <- bquote(ft[ , t2 := modl_tp <= 1.2*coff | max_med <= 1.2*coff])
e4 <- bquote(ft[ , test := hitc == 1 & (t1 | t2)])
e5 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
e6 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5, e6)
},
border.miss=function(mthd) {
flag <- "Borderline inactive"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
ft[ , tp.8 := gnls_tp >= 0.8*coff | hill_tp >= 0.8*coff]
)
e3 <- bquote(ft[ , test := hitc == 0L & actp > 0.5 & tp.8])
e4 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test", "tp.8")
e5 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4, e5)
},
overfit.hit=function(mthd) {
flag <- "Hit-call potentially confounded by overfitting"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(
ft[modl == "hill" & npts < 5 & hitc == 1, test := TRUE]
)
e3 <- bquote(
ft[modl == "gnls" & npts < 7 & hitc == 1, test := TRUE]
)
e4 <- bquote(ft[npts > 1, cna := cnst_aic + 4/(npts - 2)])
e5 <- bquote(ft[npts > 4, hna := hill_aic + 40/(npts - 4)])
e6 <- bquote(ft[npts > 6, gna := gnls_aic + 84/(npts - 7)])
e7 <- bquote(ft[ , nma := pmin(cna, hna, gna, na.rm=TRUE)])
e8 <- bquote(ft[gna == nma, nmdl := "gnls"])
e9 <- bquote(ft[hna == nma, nmdl := "hill"])
e10 <- bquote(ft[cna == nma, nmdl := "cnst"])
e11 <- bquote(ft[ , nhc := FALSE])
e12 <- bquote(
ft[nmdl == "hill" & hill_tp >= coff & max_med >= coff,
nhc := TRUE]
)
e13 <- bquote(
ft[nmdl == "gnls" & gnls_tp >= coff & max_med >= coff,
nhc := TRUE]
)
e14 <- bquote(ft[hitc == 1 & !nhc, test := TRUE])
e15 <- bquote(
f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)]
)
cr <- c(
"mc6_mthd_id", "flag", "fval", "fval_unit", "test",
"cna", "hna", "gna", "nma", "nmdl", "nhc"
)
e16 <- bquote(ft[ , (.(cr)) := NULL])
list(
e1, e2, e3, e4, e5, e6, e7, e8, e9, e10,
e11, e12, e13, e14, e15, e16
)
},
efficacy.50=function(mthd) {
flag <- "Biochemical assay with < 50% efficacy"
out <- c(
"m5id", "m4id", "aeid", "mc6_mthd_id",
"flag", "fval", "fval_unit"
)
init <- bquote(
list(.(mthd), .(flag), NA_real_, NA_character_, FALSE)
)
e1 <- bquote(ft[ , (.(c(out[4:7], "test"))) := .(init)])
e2 <- bquote(ft[hitc == 1, test := modl_tp < 50 | max_med < 50])
e3 <- bquote(f[[.(mthd)]] <- ft[which(test), .SD, .SDcols=.(out)])
cr <- c("mc6_mthd_id", "flag", "fval", "fval_unit", "test")
e4 <- bquote(ft[ , (.(cr)) := NULL])
list(e1, e2, e3, e4)
}
)
}
#-------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.