R/mc5.R

Defines functions mc5

Documented in mc5

#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of  ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the    ##
## GNU General Public License for more details.                    ##
#####################################################################

#-------------------------------------------------------------------------------
# mc5: Perform level 5 multiple-concentration processing
#-------------------------------------------------------------------------------

#' @template proclvl
#' @templateVar LVL 5
#' @templateVar type mc
#'
#' @inheritParams mc4
#'
#' @details
#' Level 5 multiple-concentration hit-calling uses the fit parameters and the
#' activity cutoff methods from mc5_aeid and mc5_methods to make an activity
#' call and identify the winning model for each fit.
#'
#' @seealso \code{\link{Method functions}}, \code{\link{MC5_Methods}}
#'
#' @keywords internal
#' 
#' @import data.table

mc5 <- function(ae, wr=FALSE) {

    ## Variable-binding to pass R CMD Check
    coff <- bmad <- adco <- maic <- cnst_aic <- hill_aic <- gnls_aic <- NULL
    modl <- hitc <- hill_tp <- max_med <- gnls_tp <- hill_95 <- hill_ga <- NULL
    hill_gw <- gnls_95 <- gnls_ga <- gnls_gw <- coff_upper <- coff_lower <- NULL
    rgbl <- hill <- hill_gu <- hill_lu <- hill_gl <- hill_ll <- hill_gc <- NULL
    hill_lc <- hill_al <- logc_min <- hill_ai <- logc_max <- hill_au <- NULL
    gnls_gu <- gnls_lu <- gnls_gl <- gnls_ll <- gnls_gc <- gnls_lc <- NULL
    gnls_al <- gnls_ai <- gnls_au <- cnst_win <- hill_win <- gnls_win <- NULL
    cnst <- fitc <- gnls <- modl_er <- cnst_er <- modl_rmse <- cnst_rmse <- NULL
    modl_prob <- cnst_prob <- hill_er <- modl_tp <- modl_ga <- modl_gw <- NULL
    hill_rmse <- hill_prob <- modl_acb <- modl_acc <- gnls_er <- modl_la <- NULL
    gnls_la <- modl_lw <- gnls_lw <- gnls_rmse <- gnls_prob <- actp <- NULL
    modl_ac10 <- NULL

    owarn <- getOption("warn")
    options(warn=1)
    on.exit(options(warn=owarn))

    ## Check the ae input
    if (length(ae) > 1) {
        warning("ae must be of length 1. Level 5 ",
                "processing incomplete; no updates",
                "\n  made to the mc5 table for AEIDS ",
                paste(ae, collapse=", "), ".")
        if(wr) return(FALSE) else return(list(FALSE, NULL))
    }

    stime <- Sys.time()

    ## Load level 4 data
    dat <- gtoxLoadData(lvl=4L, type="mc", fld="aeid", val=ae)

    ## Check if any level 4 data was loaded
    if (nrow(dat) == 0) {
        warning("No level 4 data for AEID", ae, ". Level 5 ",
                "processing incomplete;",
                " no updates\n  made to the mc5 table for AEID", ae, ".")
        if(wr) return(FALSE) else return(list(FALSE, NULL))
    }

    ttime <- round(difftime(Sys.time(), stime, units="sec"), 2)
    ttime <- paste(unclass(ttime), units(ttime))

    message("Loaded L4 AEID", ae, " (", nrow(dat), " rows; ", ttime,")\n",
            sep="")

    stime <- Sys.time()

    ## Initialize coff vector
    coff <- 0

    ## Load cutoff functions
    mthd_funcs <- mc5_mthds()

    ## Load cutoff methods
    ms <- gtoxMthdLoad(lvl=5L, id=ae, type="mc")
    if (nrow(ms) == 0) {
        warning("No level 5 methods for AEID", ae, " -- cutoff will be 0.")
    }

    ## Apply cutoff methods
    exprs <- lapply(mthd_funcs[ms$mthd], do.call, args=list())
    fenv <- environment()
    invisible(rapply(exprs, eval, envir=fenv))

    ## Determine final cutoff
    dat[ , coff := max(coff)]

    ## Determine winning model
    dat[ , maic := pmin(cnst_aic, hill_aic, gnls_aic, na.rm=TRUE)]
    ## Order matters here, because in the case of a tie the simpler model will
    ## overwrite the more complex model as the winner.
    dat[gnls_aic == maic, modl := "gnls"]
    dat[hill_aic == maic, modl := "hill"]
    dat[cnst_aic == maic, modl := "cnst"]

    ## Make the hitcall
    dat[ , hitc := FALSE]
    dat[modl == "hill" & hill_tp >= coff & max_med >= coff, hitc := TRUE]
    dat[modl == "gnls" & gnls_tp >= coff & max_med >= coff, hitc := TRUE]

###--------------------- Bin the Dose-Response Sets -----------------------###

    ## Calculate AC05 and AC95
    dat[ , hill_95 := gtoxHillACXX(95, hill_tp, hill_ga, hill_gw)]
    dat[ , gnls_95 := gtoxHillACXX(95, gnls_tp, gnls_ga, gnls_gw)]

    ## Add a few helper columns
    dat[ , coff_upper := 1.2 * coff]
    dat[ , coff_lower := 0.8 * coff]
    dat[ , rgbl := !is.na(hill)]
    dat[ , hill_gu := hill_tp >  coff_upper]
    dat[ , hill_lu := hill_tp <= coff_upper]
    dat[ , hill_gl := hill_tp >= coff_lower]
    dat[ , hill_ll := hill_tp <  coff_lower]
    dat[ , hill_gc := hill_tp >= coff]
    dat[ , hill_lc := hill_tp <  coff]
    dat[ , hill_al := hill_ga <= logc_min]
    dat[ , hill_ai := hill_ga > logc_min & hill_95 < logc_max]
    dat[ , hill_au := hill_ga > logc_min & hill_95 >= logc_max]
    dat[ , gnls_gu := gnls_tp >  coff_upper]
    dat[ , gnls_lu := gnls_tp <= coff_upper]
    dat[ , gnls_gl := gnls_tp >= coff_lower]
    dat[ , gnls_ll := gnls_tp <  coff_lower]
    dat[ , gnls_gc := gnls_tp >= coff]
    dat[ , gnls_lc := gnls_tp <  coff]
    dat[ , gnls_al := gnls_ga <= logc_min]
    dat[ , gnls_ai := gnls_ga > logc_min & gnls_95 < logc_max]
    dat[ , gnls_au := gnls_ga > logc_min & gnls_95 >= logc_max]
    dat[ , cnst_win := modl == "cnst"]
    dat[ , hill_win := modl == "hill"]
    dat[ , gnls_win := modl == "gnls"]

    ## Initiate fitc column
    dat[ , fitc := NA_integer_]

    ## 02: CANNOT DETERMINE
    dat[is.na(cnst), fitc := 2L]
    ## 04: RESP < BLINE
    dat[!rgbl & !is.na(cnst), fitc := 4L]
    ## 07: NO TP >= 0.8(COFF)
    dat[rgbl & cnst_win & (!hill_gl|is.na(hill_tp)) & (!gnls_gl|is.na(gnls_tp)),
        fitc := 7L]
    ## 09: NO TP >= COFF
    dat[is.na(fitc) & rgbl & cnst_win &
        (!hill_gc|is.na(hill_tp)) & (!gnls_gc|is.na(gnls_tp)),
        fitc := 9L]
    ## 10: ANY TP >= COFF
    dat[is.na(fitc) & rgbl & cnst_win & (hill_gc | gnls_gc), fitc := 10L]
    ## 54: GNLS DNC
    dat[!hitc & hill_win & hill_ll & !gnls, fitc := 54]
    ## 13: GNLS < 0.8(COFF)
    dat[is.na(fitc) & !hitc & hill_win & hill_ll & gnls_ll, fitc := 13L]
    ## 15: GNLS < COFF
    dat[is.na(fitc) & !hitc & hill_win & hill_ll & gnls_lc, fitc := 15L]
    ## 16: GNLS >= COFF
    dat[is.na(fitc) & !hitc & hill_win & hill_ll & gnls_gc, fitc := 16L]
    ## 55: GNLS DNC
    dat[!hitc & hill_win & hill_gl & !gnls, fitc := 55]
    ## 18: GNLS < 0.8(COFF)
    dat[is.na(fitc) & !hitc & hill_win & hill_gl & gnls_ll, fitc := 18L]
    ## 20: GNLS < COFF
    dat[is.na(fitc) & !hitc & hill_win & hill_gl & gnls_lc, fitc := 20L]
    ## 21: GNLS >= COFF
    dat[is.na(fitc) & !hitc & hill_win & hill_gl & gnls_gc, fitc := 21L]
    ## 52: HILL DNC
    dat[!hitc & gnls_win & gnls_ll & !hill, fitc := 52]
    ## 24: HILL < 0.8(COFF)
    dat[is.na(fitc) & !hitc & gnls_win & gnls_ll & hill_ll, fitc := 24L]
    ## 26: HILL < COFF
    dat[is.na(fitc) & !hitc & gnls_win & gnls_ll & hill_lc, fitc := 26L]
    ## 27: HILL >= COFF
    dat[is.na(fitc) & !hitc & gnls_win & gnls_ll & hill_gc, fitc := 27L]
    ## 53: HILL DNC
    dat[!hitc & gnls_win & gnls_gl & !hill, fitc := 53]
    ## 29: HILL < 0.8(COFF)
    dat[is.na(fitc) & !hitc & gnls_win & gnls_gl & hill_ll, fitc := 29L]
    ## 31: HILL < COFF
    dat[is.na(fitc) & !hitc & gnls_win & gnls_gl & hill_lc, fitc := 31L]
    ## 32: HILL >= COFF
    dat[is.na(fitc) & !hitc & gnls_win & gnls_gl & hill_gc, fitc := 32L]
    ## 36: GA <= LCONC
    dat[hitc & hill_win & hill_lu & hill_al, fitc := 36L]
    ## 37: LCONC < GA < HCONC
    dat[hitc & hill_win & hill_lu & hill_ai, fitc := 37L]
    ## 38: GA >= HCONC
    dat[hitc & hill_win & hill_lu & hill_au, fitc := 38L]
    ## 40: GA <= LCONC
    dat[hitc & hill_win & hill_gu & hill_al, fitc := 40L]
    ## 41: LCONC < GA < HCONC
    dat[hitc & hill_win & hill_gu & hill_ai, fitc := 41L]
    ## 42: GA >= HCONC
    dat[hitc & hill_win & hill_gu & hill_au, fitc := 42L]
    ## 45: GA <= LCONC
    dat[hitc & gnls_win * gnls_lu & gnls_al, fitc := 45L]
    ## 46: LCONC < GA < HCONC
    dat[hitc & gnls_win * gnls_lu & gnls_ai, fitc := 46L]
    ## 47: GA >= HCONC
    dat[hitc & gnls_win * gnls_lu & gnls_au, fitc := 47L]
    ## 49: GA <= LCONC
    dat[hitc & gnls_win * gnls_gu & gnls_al, fitc := 49L]
    ## 50: LCONC < GA < HCONC
    dat[hitc & gnls_win * gnls_gu & gnls_ai, fitc := 50L]
    ## 51: GA >= HCONC
    dat[hitc & gnls_win * gnls_gu & gnls_au, fitc := 51L]

    ## Update hit-calls with the cannot determine call
    dat[ , hitc := as.integer(hitc)]
    dat[is.na(cnst), hitc := -1L]

    ## Add model fields
    modl_pars <- c(
        "modl_acb",
        "modl_acc",
        "modl_ac10",
        "modl_er",
        "modl_tp",
        "modl_ga",
        "modl_gw",
        "modl_la",
        "modl_lw",
        "modl_rmse",
        "modl_prob"
    )
    dat[ , (modl_pars) := NA_real_]
    dat[modl == "cnst", modl_er := cnst_er]
    dat[modl == "cnst", modl_rmse := cnst_rmse]
    dat[modl == "cnst", modl_prob := cnst_prob]
    dat[modl == "hill", modl_er := hill_er]
    dat[modl == "hill", modl_tp := hill_tp]
    dat[modl == "hill", modl_ga := hill_ga]
    dat[modl == "hill", modl_gw := hill_gw]
    dat[modl == "hill", modl_rmse := hill_rmse]
    dat[modl == "hill", modl_prob := hill_prob]
    dat[modl == "hill" & hill_tp >= 3 * bmad,
        modl_acb := gtoxHillConc(3 * bmad, hill_tp, hill_ga, hill_gw)]
    dat[modl == "hill" & hill_tp >= coff,
        modl_acc := gtoxHillConc(coff, hill_tp, hill_ga, hill_gw)]
    dat[modl == "hill", modl_ac10 := gtoxHillACXX(
                            10, hill_tp, hill_ga, hill_gw)]
    dat[modl == "gnls", modl_er := gnls_er]
    dat[modl == "gnls", modl_tp := gnls_tp]
    dat[modl == "gnls", modl_ga := gnls_ga]
    dat[modl == "gnls", modl_gw := gnls_gw]
    dat[modl == "gnls", modl_la := gnls_la]
    dat[modl == "gnls", modl_lw := gnls_lw]
    dat[modl == "gnls", modl_rmse := gnls_rmse]
    dat[modl == "gnls", modl_prob := gnls_prob]
    dat[modl == "gnls" & gnls_tp >= 3 * bmad,
        modl_acb := gtoxHillConc(3 * bmad, gnls_tp, gnls_ga, gnls_gw)]
    dat[modl == "gnls" & gnls_tp >= coff,
        modl_acc := gtoxHillConc(coff,     gnls_tp, gnls_ga, gnls_gw)]
    dat[modl == "gnls", modl_ac10 := gtoxHillACXX(
                            10, gnls_tp, gnls_ga, gnls_gw)]

    ## Add activity probability
    dat[ , actp := 1 - cnst_prob]

    ttime <- round(difftime(Sys.time(), stime, units="sec"), 2)
    ttime <- paste(unclass(ttime), units(ttime))
    message("Processed L5 AEID", ae, " (", nrow(dat),
            " rows; ", ttime, ")\n", sep="")

    res <- TRUE

    outcols <- c(
        "m4id", "aeid", "modl", "hitc", "fitc",
        "coff", "actp", modl_pars
    )
    dat <- dat[ , .SD, .SDcols=outcols]

    ## Load into mc5 table -- else return results
    if (wr) {
        stime <- Sys.time()
        gtoxWriteData(dat=dat, lvl=5L, type="mc")

        ttime <- round(difftime(Sys.time(), stime, units="sec"), 2)
        ttime <- paste(unclass(ttime), units(ttime))
        message("Wrote L5 AEID", ae, " (", nrow(dat),
                " rows; ", ttime, ")\n", sep="")
    } else {
        res <- c(list(res), list(dat))
    }

    return(res)

}

#-------------------------------------------------------------------------------
pmpsa-hpc/GladiaTOX documentation built on Sept. 1, 2023, 5:52 p.m.