R/mc4.R

Defines functions mc4

Documented in mc4

#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of  ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the    ##
## GNU General Public License for more details.                    ##
#####################################################################

#-------------------------------------------------------------------------------
# mc4: Perform level 4 multiple-concentration processing
#-------------------------------------------------------------------------------

#' @template proclvl
#' @templateVar LVL 4
#' @templateVar type mc
#'
#' @param ae Integer of length 1, assay endpoint id (aeid) for processing.
#' @param wr Logical, whether the processed data should be written to the gtox
#' database
#'
#' @details
#' Level 4 multiple-concentration modeling takes the dose-response data for
#' chemical-assay pairs, and fits three models to the data: constant, hill,
#' and gain-loss. For more information about the models see
#' \code{\link{Models}}. When a chemical has more than one sample, the function
#' fits each sample seperately.
#'
#' @seealso \code{\link{gtoxFit}}, \code{\link{Models}}
#'
#' @keywords internal
#' 
#' @import data.table
#' @importFrom stats mad

mc4 <- function(ae, wr=FALSE) {

    ## Variable-binding to pass R CMD Check
    bmad <- resp <- cndx <- wllt <- logc <- spid <- cnst_aic <- hill_aic <- NULL
    gnls_aic <- NULL

    owarn <- getOption("warn")
    options(warn=1)
    on.exit(options(warn=owarn))

    ## Check the ae input
    if (length(ae) > 1) {
        warning("ae must be of length 1. Level 4 ",
                "processing incomplete; no updates",
                "\n  made to the mc4 table for AEIDS ",
                paste(ae, collapse=", "), ".")
        if(wr) return(FALSE) else return(list(FALSE, NULL))
    }

    stime <- Sys.time()

    ## Load level 3 data
    dat <- gtoxLoadData(lvl=3L, type="mc", fld="aeid", val=ae)
    dat <- dat[wllt %in% c("t", "c", "o", "n")]

    ## Check if any level 3 data was loaded
    if (nrow(dat) == 0) {
        warning("No level 3 data for AEID", ae, ". Level 4 ",
                "processing incomplete;",
                " no updates\n  made to the mc4 table for AEID", ae, ".")
        if(wr) return(FALSE) else return(list(FALSE, NULL))
    }

    ttime <- round(difftime(Sys.time(), stime, units="sec"), 2)
    ttime <- paste(unclass(ttime), units(ttime))

    message("Loaded L3 AEID", ae,
            " (", nrow(dat), " rows; ",
            ttime,")\n", sep="")

    stime <- Sys.time()

    ## Calculate the baseline mad
    dat[ , bmad := mad(resp[cndx %in% seq_len(2) & wllt == "t"], na.rm=TRUE)]

    ## Remove neutral control before fitting
    dat <- dat[wllt %in% c("t", "c", "o")]

    ## Check to see if all samples should be fit
    fit_all <- as.logical(gtoxLoadAeid("aeid", ae, "fit_all")$fit_all)

    fitpars <- c(
        "resp_max",
        "resp_min",
        "max_mean",
        "max_mean_conc",
        "max_med",
        "max_med_conc",
        "logc_max",
        "logc_min",
        "cnst",
        "hill",
        "hcov",
        "gnls",
        "gcov",
        "cnst_er",
        "cnst_aic",
        "cnst_rmse",
        "hill_tp",
        "hill_tp_sd",
        "hill_ga",
        "hill_ga_sd",
        "hill_gw",
        "hill_gw_sd",
        "hill_er",
        "hill_er_sd",
        "hill_aic",
        "hill_rmse",
        "gnls_tp",
        "gnls_tp_sd",
        "gnls_ga",
        "gnls_ga_sd",
        "gnls_gw",
        "gnls_gw_sd",
        "gnls_la",
        "gnls_la_sd",
        "gnls_lw",
        "gnls_lw_sd",
        "gnls_er",
        "gnls_er_sd",
        "gnls_aic",
        "gnls_rmse",
        "nconc",
        "npts",
        "nrep",
        "nmed_gtbl"
    )

    ## Fit the data by spid
    dat[ ,
    (c("tmpi", fitpars)) := c(
        .GRP,
        gtoxFit(
            logc=logc,
            resp=resp,
            bmad=bmad,
            force.fit=fit_all
        )
    ),
    by=spid]

    ## Calculate the aic probabilities
    aic_probs <- c("cnst_prob", "hill_prob", "gnls_prob")
    dat[ , (aic_probs) := gtoxAICProb(cnst_aic, hill_aic, gnls_aic)]

    ttime <- round(difftime(Sys.time(), stime, units="sec"), 2)
    ttime <- paste(unclass(ttime), units(ttime))
    message(
        "Processed L4 AEID", ae, " (", nrow(dat),
        " rows; ", ttime, ")\n", sep=""
    )

    res <- TRUE

    ## Load into mc4 & mc4_agg tables -- else return results
    if (wr) {
        stime <- Sys.time()
        gtoxWriteData(dat=dat, lvl=4L, type="mc")

        ttime <- round(difftime(Sys.time(), stime, units="sec"), 2)
        ttime <- paste(unclass(ttime), units(ttime))
        message(
            "Wrote L4 AEID", ae, " (", nrow(dat),
            " rows; ", ttime, ")\n", sep=""
        )
    } else {
        res <- c(list(res), list(dat))
    }

    return(res)

}

#-------------------------------------------------------------------------------
pmpsa-hpc/GladiaTOX documentation built on Sept. 1, 2023, 5:52 p.m.