#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##
## GNU General Public License for more details. ##
#####################################################################
#-------------------------------------------------------------------------------
# interlaceFunc: Calculate the distance weighted mean of a square to detect
# interlaced (384 chemical plate) effects caused by potential
# spillage, volatility or overly non-random sample plating
#-------------------------------------------------------------------------------
#' @title Calculate the weighted mean of a square to detect interlace effect
#'
#' @description
#' \code{interlaceFunc} calculates the distance weighted mean of square regions
#' from a 384-well plate that is interlaced onto a 1536 well plate to detect
#' non-random signals coming from the source plate
#'
#' @param val Numeric, the well values
#' @param intq Numeric, interlace quadrant
#' @param coli Integer, the well column index
#' @param rowi Integer, the well row index
#' @param apid Character, the assay plate id
#' @param r Integer, the number of wells from the center well (in one
#' direction) to make the square
#'
#' @seealso \code{\link{MC6_Methods}}, \code{\link{Method functions}},
#' \code{\link{mc6}}
#'
#' @keywords internal
#'
#' @return None
#'
#' @import data.table
#' @importFrom stats dist
interlaceFunc <- function(val, intq, coli, rowi, apid, r) {
## Variable-binding to pass R CMD Check
cold <- rowd <- intv <- index <- NULL
if (r > 4) r <- 4
nrep <- (1 + 2*r)^2
minc <- min(coli)
maxc <- max(coli)
minr <- min(rowi)
maxr <- max(rowi)
ordr <- order(apid, intq, coli, rowi)
val <- val[ordr]
val[val > 100] <- 100
intq <- intq[ordr]
coli <- coli[ordr]
rowi <- rowi[ordr]
apid <- apid[ordr]
val_len <- length(val)
adj <- -r:r
adj <- c(0,adj[-which(adj == 0)])
adj_len <- length(adj)
adjc <- rep(adj, each=adj_len)
adjr <- rep(adj, times=adj_len)
adjd <- 1/as.matrix(dist(cbind(2*adjc,adjr)))[,1]
adjd[1] <- 1
dat <- data.table(
val=rep(val, nrep),
coli=rep(coli, nrep),
rowi=rep(rowi, nrep),
apid=rep(apid, nrep),
intq=rep(intq, nrep),
ordr=rep(ordr, nrep),
index=rep(seq_len(nrep), each=val_len),
cold=rep(adjc, each=val_len),
rowd=rep(adjr, each=val_len),
adjd=rep(adjd, each=val_len)
)
dat[, coli := coli + cold]
dat[, rowi := rowi + rowd]
dat[, intv := sum(val * adjd, na.rm=TRUE)/nrep -
max(val * adjd, na.rm=TRUE)/nrep,
by=list(apid, intq, coli, rowi)]
dat[index == 1, intv][order(ordr)][]
}
#-------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.