R/interlaceFunc.R

Defines functions interlaceFunc

Documented in interlaceFunc

#####################################################################
## This program is distributed in the hope that it will be useful, ##
## but WITHOUT ANY WARRANTY; without even the implied warranty of  ##
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the    ##
## GNU General Public License for more details.                    ##
#####################################################################

#-------------------------------------------------------------------------------
# interlaceFunc: Calculate the distance weighted mean of a square to detect
#                interlaced (384 chemical plate) effects caused by potential
#                spillage, volatility or overly non-random sample plating
#-------------------------------------------------------------------------------

#' @title Calculate the weighted mean of a square to detect interlace effect
#'
#' @description
#' \code{interlaceFunc} calculates the distance weighted mean of square regions
#' from a 384-well plate that is interlaced onto a 1536 well plate to detect
#' non-random signals coming from the source plate
#'
#' @param val Numeric, the well values
#' @param intq Numeric, interlace quadrant
#' @param coli Integer, the well column index
#' @param rowi Integer, the well row index
#' @param apid Character, the assay plate id
#' @param r Integer, the number of wells from the center well (in one
#' direction) to make the square
#'
#' @seealso \code{\link{MC6_Methods}}, \code{\link{Method functions}},
#' \code{\link{mc6}}
#' 
#' @keywords internal
#' 
#' @return None
#'
#' @import data.table
#' @importFrom stats dist

interlaceFunc <- function(val, intq, coli, rowi, apid, r) {

    ## Variable-binding to pass R CMD Check
    cold <- rowd <- intv <- index <- NULL

    if (r > 4) r <- 4
    nrep <- (1 + 2*r)^2
    minc <- min(coli)
    maxc <- max(coli)
    minr <- min(rowi)
    maxr <- max(rowi)
    ordr <- order(apid, intq, coli, rowi)
    val <- val[ordr]
    val[val > 100] <- 100
    intq <- intq[ordr]
    coli <- coli[ordr]
    rowi <- rowi[ordr]
    apid <- apid[ordr]
    val_len <- length(val)
    adj <- -r:r
    adj <- c(0,adj[-which(adj == 0)])
    adj_len <- length(adj)
    adjc <- rep(adj, each=adj_len)
    adjr <- rep(adj, times=adj_len)
    adjd <- 1/as.matrix(dist(cbind(2*adjc,adjr)))[,1]
    adjd[1] <- 1
    dat <- data.table(
        val=rep(val, nrep),
        coli=rep(coli, nrep),
        rowi=rep(rowi, nrep),
        apid=rep(apid, nrep),
        intq=rep(intq, nrep),
        ordr=rep(ordr, nrep),
        index=rep(seq_len(nrep), each=val_len),
        cold=rep(adjc, each=val_len),
        rowd=rep(adjr, each=val_len),
        adjd=rep(adjd, each=val_len)
    )

    dat[, coli := coli + cold]
    dat[, rowi := rowi + rowd]
    dat[, intv := sum(val * adjd, na.rm=TRUE)/nrep -
        max(val * adjd, na.rm=TRUE)/nrep,
        by=list(apid, intq, coli, rowi)]
    dat[index == 1, intv][order(ordr)][]

}

#-------------------------------------------------------------------------------
pmpsa-hpc/GladiaTOX documentation built on Sept. 1, 2023, 5:52 p.m.