#' Perform independent component analysis after processing missing values
#'
#' @param ... Arguments passed on to \code{fastICA::fastICA}
#' @inheritParams stats::prcomp
#' @inheritParams reduceDimensionality
#' @inheritParams fastICA::fastICA
#'
#' @family functions to analyse independent components
#' @return ICA result in a \code{prcomp} object
#' @export
#'
#' @examples
#' performICA(USArrests)
performICA <- function(data, n.comp=min(5, ncol(data)), center=TRUE,
scale.=FALSE, missingValues=round(0.05 * nrow(data)),
alg.typ=c("parallel", "defaltion"),
fun=c("logcosh", "exp"), alpha=1.0, ...) {
alg.typ <- match.arg(alg.typ)
fun <- match.arg(fun)
reduceDimensionality(data, "ica", missingValues=missingValues,
center=center, scale.=scale., n.comp=n.comp,
alg.typ=alg.typ, fun=fun, alpha=alpha, ...)
}
#' Create multiple scatterplots from ICA
#'
#' @param ica Object resulting from \code{\link{performICA}()}
#' @param components Numeric: independent components to plot
#' @param groups Matrix: groups to plot indicating the index of interest of the
#' samples (use clinical or sample groups)
#' @inheritDotParams pairsD3::pairsD3 -x
#'
#' @importFrom pairsD3 pairsD3
#'
#' @family functions to analyse independent components
#' @return Multiple scatterplots as a \code{pairsD3} object
#' @export
#'
#' @examples
#' data <- scale(USArrests)
#' ica <- fastICA::fastICA(data, n.comp=4)
#' plotICA(ica)
#'
#' # Colour by groups
#' groups <- NULL
#' groups$sunny <- c("California", "Hawaii", "Florida")
#' groups$ozEntrance <- c("Kansas")
#' groups$novel <- c("New Mexico", "New York", "New Hampshire", "New Jersey")
#' plotICA(ica, groups=groups)
plotICA <- function(ica, components=seq(10), groups=NULL, ...) {
ica <- ica$S
colnames(ica) <- paste0("IC", seq(ncol(ica)))
if (!is.null(groups)) {
ica <- ica[unlist(groups), ]
groups <- rep(names(groups), sapply(groups, length))
}
components <- components[components <= ncol(ica)]
return(pairsD3(ica[ , components], group=groups, ...))
}
#' Create a scatterplot for ICA
#'
#' @param ica Object containing an ICA
#' @param icX Character: name of the X axis
#' @param icY Character: name of the Y axis
#' @param groups Matrix: groups to plot indicating the index of interest of the
#' samples (use clinical or sample groups)
#'
#' @importFrom highcharter highchart hc_chart hc_xAxis hc_yAxis hc_tooltip %>%
#'
#' @return Scatterplot as an \code{highcharter} object
#' @keywords internal
#'
#' @examples
#' ica <- performICA(USArrests, scale=TRUE)
#' psichomics:::plotSingleICA(ica)
#' psichomics:::plotSingleICA(ica, icX=2, icY=3)
#'
#' # Colour by groups
#' groups <- NULL
#' groups$sunny <- c("California", "Hawaii", "Florida")
#' groups$ozEntrance <- c("Kansas")
#' groups$novel <- c("New Mexico", "New York", "New Hampshire", "New Jersey")
#' psichomics:::plotSingleICA(ica, groups=groups)
plotSingleICA <- function(ica, icX=1, icY=2, groups=NULL) {
if (is.character(icX)) icX <- as.numeric(gsub("[A-Z]", "", icX))
if (is.character(icY)) icY <- as.numeric(gsub("[A-Z]", "", icY))
df <- data.frame(ica$S)
label <- colnames(df[ , c(icX, icY)])
hc <- highchart(height="400px") %>%
hc_chart(zoomType="xy") %>%
hc_xAxis(title=list(text=label[1]), crosshair=TRUE) %>%
hc_yAxis(title=list(text=label[2]), gridLineWidth=0,
minorGridLineWidth=0, crosshair=TRUE) %>%
hc_tooltip(pointFormat="{point.sample}") %>%
export_highcharts()
if (is.null(groups)) {
hc <- hc_scatter(hc, df[[icX]], df[[icY]], sample=rownames(df))
} else {
# Colour data based on the selected groups
for (group in names(groups)) {
rows <- groups[[group]]
colour <- attr(groups, "Colour")
if (group %in% names(colour)) {
colour <- colour[[group]]
} else {
colour <- NA
}
values <- df[rows, ]
if (!all(is.na(values))) {
hc <- hc_scatter(
hc, values[[icX]], values[[icY]], name=group,
sample=rownames(values), showInLegend=TRUE,
color=colour)
}
}
}
return(hc)
}
#' @rdname appUI
#'
#' @importFrom shinyBS bsTooltip
#' @importFrom shiny checkboxGroupInput tagList uiOutput hr sliderInput
#' actionButton selectizeInput
#' @importFrom shinyjs hidden
#' @importFrom pairsD3 pairsD3Output
icaUI <- function(id) {
ns <- NS(id)
icaOptions <- div(
id=ns("icaOptions"),
selectizeInput(ns("dataForICA"), "Dataset to perform ICA on",
width="100%", choices=NULL, options=list(
placeholder="No data available")),
sliderInput(ns("componentNumber"), "Number of components",
width="100%", value=5, min=2, max=10),
checkboxGroupInput(ns("preprocess"), "Preprocessing",
c("Center values"="center", "Scale values"="scale"),
selected=c("center"), width="100%"),
numericInput(ns("missingValues"), div(
"Number of missing values to tolerate per event",
icon("question-circle")), min=0, max=100, value=10, width="100%"),
bsTooltip(ns("missingValues"), placement="right", paste(
"For events with a tolerable percentage of missing",
"values, the median value of the event across",
"samples is used to replace those missing values.",
"The remaining events are discarded."),
options=list(container="body")),
selectGroupsUI(ns("dataGroups"), "Perform ICA on...", type="Samples",
noGroupsLabel="All samples",
groupsLabel="Samples from selected groups"),
selectGroupsUI(
ns("dataGroups2"), "Perform ICA on...", type="ASevents",
noGroupsLabel="All genes and splicing events",
groupsLabel="Genes and splicing events from selected groups"),
processButton(ns("calculate"), "Calculate ICA")
)
performIcaCollapse <- bsCollapsePanel(
list(icon("cogs"), "Perform ICA"), value="Perform ICA", style="info",
errorDialog(paste("No alternative splicing quantification or gene",
"expression data are available."),
id=ns("icaOptionsDialog"), buttonLabel="Load data",
buttonIcon="plus-circle", buttonId=ns("loadData")),
hidden(icaOptions))
plotIcaCollapse <- bsCollapsePanel(
list(icon("binoculars"), "Plot ICA"),
value="Plot ICA", style="info",
errorDialog("ICA has not yet been performed.", id=ns("noIcaPlotUI")),
hidden(div(
id=ns("icaPlotUI"),
selectizeInput(
ns("plotComponents"), choices=NULL, width="100%", multiple=TRUE,
"Independent components to plot (10 maximum)", options=list(
maxItems=10, plugins=list('remove_button', 'drag_drop'))),
selectGroupsUI(
ns("colourGroups"), "Sample colouring", type="Samples",
noGroupsLabel="Do not colour samples",
groupsLabel="Colour using selected groups"),
bsCollapse(
bsCollapsePanel(
list(icon("paint-brush"), "Plot style"), value="Plot style",
sliderInput(ns("plotCex"), "Point size", min=1, max=10,
step=1, value=3, width="100%"),
sliderInput(ns("plotOpacity"), "Point opacity", min=0,
max=1, step=0.01, value=0.9, width="100%"))),
actionButton(ns("showVariancePlot"), "Show variance plot"),
actionButton(ns("plot"), "Plot ICA", class="btn-primary"))))
kmeansPanel <- conditionalPanel(
sprintf("input[id='%s'] == '%s'", ns("clusteringMethod"), "kmeans"),
sliderInput(ns("kmeansIterations"),
"Maximum number of iterations",
min=10, max=100, value=20, width="100%"),
sliderInput(ns("kmeansNstart"),
"Number of initial random sets",
min=50, max=1000, value=100, width="100%"),
selectizeInput(ns("kmeansMethod"), "K-means method",
width="100%", c("Hartigan-Wong",
"Lloyd-Forgy", "MacQueen")))
pamPanel <- conditionalPanel(
sprintf("input[id='%s'] == '%s'", ns("clusteringMethod"), "pam"),
selectizeInput(ns("pamMetric"), width="100%",
"Metric to be used when calculating dissimilarities",
c("Euclidean", "Manhattan")))
claraPanel <- conditionalPanel(
sprintf("input[id='%s'] == '%s'", ns("clusteringMethod"), "clara"),
selectizeInput(ns("claraMetric"), width="100%",
"Metric to be used when calculating dissimilarities",
c("Euclidean", "Manhattan")),
sliderInput(
ns("claraSamples"), "Samples to be randomly drawn",
min=10, max=1000, value=50, step=10, width="100%"))
clusteringCollapse <- bsCollapsePanel(
list(icon("th-large"), "Clustering"),
value="Clustering", style="info",
errorDialog("ICA has not yet been plotted.", id=ns("noClusteringUI")),
hidden(
div(id=ns("clusteringUI"),
selectizeInput(
ns("clusteringComponents"), choices=NULL, width="100%",
"Indepedent components to cluster (exactly 2)",
multiple=TRUE, options=list(
maxItems=2,
plugins=list('remove_button', 'drag_drop'))),
selectizeInput(
ns("clusteringMethod"),
"Clustering algorithm", width="100%", selected="clara",
c("k-means"="kmeans",
"Partitioning Around Medoids (PAM)"="pam",
"Clustering Large Applications (CLARA)"="clara")),
sliderInput(ns("clusterNumber"), "Number of clusters",
min=1, max=20, value=2, width="100%"),
kmeansPanel, pamPanel, claraPanel,
processButton(ns("saveClusters"), "Create groups from clusters")
)))
tagList(
uiOutput(ns("modal")),
sidebar(
bsCollapse(
id=ns("icaCollapse"), open="Perform ICA",
performIcaCollapse,
plotIcaCollapse,
clusteringCollapse) ),
mainPanel( pairsD3Output(ns("scatterplot"), height="600px") )
)
}
#' Server logic for clustering ICA data
#'
#' @inheritParams appServer
#'
#' @importFrom stats kmeans
#' @importFrom cluster pam clara silhouette
#' @importFrom shiny renderTable tableOutput
#' @importFrom pairsD3 renderPairsD3
#'
#' @inherit psichomics return
#' @keywords internal
clusterICAset <- function(session, input, output) {
clusterICA <- reactive({
algorithm <- input$clusteringMethod
clusters <- input$clusterNumber
ica <- getICA()
clusteringComponents <- input$clusteringComponents
if ( !is.null(ica$S) )
groups <- getSelectedGroups(input, "colourGroups", "Samples",
filter=rownames(ica$S))
else
groups <- NULL
if (is.null(ica) || is.null(clusteringComponents) ||
length(clusteringComponents) < 2) return(NULL)
icaScores <- ica$S[ , clusteringComponents]
clustering <- NULL
if (algorithm == "kmeans") {
isolate({
iterations <- input$kmeansIterations
nstart <- input$kmeansNstart
method <- input$kmeansMethod
})
if (method == "Lloyd-Forgy") method <- "Lloyd"
clustering <- kmeans(icaScores, clusters, iter.max=iterations,
nstart=nstart, algorithm=method)
clustering <- clustering$cluster
} else if (algorithm == "pam") {
metric <- tolower(isolate(input$pamMetric))
clustering <- pam(icaScores, clusters, metric=metric,
cluster.only=TRUE)
} else if (algorithm == "clara") {
isolate({
metric <- tolower(input$claraMetric)
samples <- input$claraSamples
})
clustering <- clara(icaScores, clusters, metric=metric,
samples=samples, medoids.x=FALSE,
keep.data=FALSE, pamLike=TRUE)
clustering <- clustering$clustering
}
return(clustering)
})
# Create data groups from clusters
observeEvent(input$saveClusters, {
clustering <- clusterICA()
if (!is.null(clustering)) {
ica <- getICA()
if ( !is.null(ica$S) )
selectedGroups <- getSelectedGroups(
input, "colourGroups", "Samples",
filter=rownames(ica$S))
else
selectedGroups <- NULL
ics <- input$clusteringComponents
icX <- ics[1]
icY <- ics[2]
hc <- plotSingleICA(ica, icX, icY, selectedGroups) %>%
plotClusters(ica$S[ , c(icX, icY)], clustering) %>%
hc_legend(symbolHeight=8, symbolWidth=8)
infoModal(
session, "Groups successfully created", size="medium",
fluidRow(
column(
6, "The following groups were created based on the",
"selected clustering options. They are available for",
"selection and modification from any group selection",
"input.", hr(),
tableOutput(session$ns("clusteringTable"))),
column(6, hc)))
new <- split(names(clustering), clustering)
names <- paste("Cluster", names(new))
groups <- cbind("Names"=names,
"Subset"="ICA clustering", "Input"="ICA clustering",
"Samples"=new)
rownames(groups) <- names
# Match samples with subjects (if loaded)
subjects <- isolate(getSubjectId())
if (!is.null(subjects)) {
indiv <- lapply(new, function(i)
unname(getSubjectFromSample(i, patientId=subjects)))
groups <- cbind(groups[ , seq(3), drop=FALSE], "Patients"=indiv,
groups[ , 4, drop=FALSE])
}
if (!is.null(groups)) appendNewGroups("Samples", groups)
# Render as table for user
colnames(groups)[1] <- "Group"
groups[ , "Samples"] <- sapply(groups[ , "Samples"], length)
cols <- c(1, 4)
if (!is.null(subjects)) {
groups[ , "Patients"] <- sapply(groups[ , "Patients"], length)
cols <- c(cols, 5)
}
output$clusteringTable <- renderTable(groups[ , cols], digits=0)
}
})
}
#' @rdname appServer
#'
#' @importFrom shinyjs runjs hide show
#' @importFrom pairsD3 renderPairsD3
#' @importFrom stats setNames
icaServer <- function(input, output, session) {
ns <- session$ns
selectGroupsServer(session, "dataGroups", "Samples")
selectGroupsServer(session, "dataGroups2", "ASevents")
selectGroupsServer(session, "colourGroups", "Samples")
observe({
incLevels <- getInclusionLevels()
geneExpr <- getGeneExpression()
if (is.null(incLevels) && is.null(geneExpr)) {
hide("icaOptions")
show("icaOptionsDialog")
} else {
show("icaOptions")
hide("icaOptionsDialog")
}
})
observe({
if (!is.null(getICA())) {
hide("noIcaPlotUI", animType="fade")
show("icaPlotUI", animType="fade")
} else {
show("noIcaPlotUI", animType="fade")
hide("icaPlotUI", animType="fade")
show("noClusteringUI", animType="fade")
hide("clusteringUI", animType="fade")
}
})
# Update available data input
observe({
geneExpr <- getGeneExpression()
incLevels <- getInclusionLevels()
if (!is.null(incLevels) || !is.null(geneExpr)) {
choices <- c(attr(incLevels, "dataType"), rev(names(geneExpr)))
updateSelectizeInput(session, "dataForICA", choices=choices)
}
})
observeEvent(input$dataForICA, {
selectedDataForICA <- input$dataForICA
if (selectedDataForICA == "Inclusion levels")
dataForICA <- isolate(getInclusionLevels())
else if (grepl("^Gene expression", selectedDataForICA))
dataForICA <- isolate(getGeneExpression(selectedDataForICA))
else return(NULL)
val <- ncol(dataForICA)
maximum <- min(5, val)
updateSliderInput(session, "componentNumber", value=maximum, max=val)
})
observeEvent(input$loadData, missingDataGuide("Inclusion levels"))
observeEvent(input$takeMeThere, missingDataGuide("Inclusion levels"))
# Perform independent component analysis (ICA)
observeEvent(input$calculate, {
selectedDataForICA <- input$dataForICA
if (selectedDataForICA == "Inclusion levels") {
dataForICA <- isolate(getInclusionLevels())
dataType <- "Inclusion levels"
groups2Type <- "ASevents"
} else if (grepl("^Gene expression", selectedDataForICA)) {
dataForICA <- isolate(getGeneExpression(selectedDataForICA))
dataType <- "Gene expression"
groups2Type <- "Genes"
} else {
missingDataModal(session, "Inclusion levels", ns("takeMeThere"))
return(NULL)
}
if (is.null(dataForICA)) {
missingDataModal(session, "Inclusion levels", ns("takeMeThere"))
} else {
time <- startProcess("calculate")
isolate({
groups <- getSelectedGroups(input, "dataGroups", "Samples",
filter=colnames(dataForICA))
groups2 <- getSelectedGroups(input, "dataGroups2", groups2Type,
filter=rownames(dataForICA))
preprocess <- input$preprocess
componentNumber <- input$componentNumber
missingValues <- input$missingValues
})
# Subset data based on the selected groups
if ( !is.null(groups) )
dataForICA <- dataForICA[ , unlist(groups), drop=FALSE]
if ( !is.null(groups2) )
dataForICA <- dataForICA[unlist(groups2), , drop=FALSE]
# Raise error if data has no rows
if (nrow(dataForICA) == 0) {
errorModal(session, "No data from ICA",
"ICA returned nothing. Check if everything is as",
"expected and try again.",
caller="Independent component analysis")
endProcess("calculate", closeProgressBar=FALSE)
return(NULL)
}
# Transpose the data to have individuals as rows
dataForICA <- t(dataForICA)
# Perform independent component analysis (ICA) on the subset data
ica <- tryCatch(
performICA(dataForICA, n.comp=componentNumber,
missingValues=missingValues,
center="center" %in% preprocess,
scale.="scale" %in% preprocess), error=return)
if (is.null(ica)) {
errorModal(session, "No individuals to plot ICA",
"Try increasing the tolerance of missing values per",
"event", caller="Independent component analysis")
} else if (is(ica, "error")) {
## TODO(NunoA): what to do in this case?
errorModal(
session, "ICA calculation error",
"Constant/zero columns cannot be resized to unit variance",
caller="Independent component analysis")
} else {
attr(ica, "dataType") <- dataType
attr(ica, "firstICA") <- is.null(getICA())
setICA(ica)
}
updateCollapse(session, "icaCollapse", "Plot ICA")
endProcess("calculate", closeProgressBar=FALSE)
}
})
# Update select inputs of the indepedent components
observe({
ica <- getICA()
if (is.null(ica)) {
choices <- c("ICA has not yet been performed"="")
updateSelectizeInput(session, "plotComponents", choices=choices)
updateSelectizeInput(session, "clusteringComponents",
choices=choices)
return(NULL)
}
choices <- setNames(colnames(ica$S), colnames(ica$S))
choices <- c(choices, "Select indepedent components"="")
updateSelectizeInput(session, "plotComponents", choices=choices,
selected=head(choices, 10))
updateSelectizeInput(session, "clusteringComponents", choices=choices,
selected=head(choices, 2))
})
# Plot the independent component analysis
observeEvent(input$plot, {
isolate({
ica <- getICA()
components <- input$plotComponents
if ( !is.null(ica$S) ) {
groups <- getSelectedGroups(input, "colourGroups", "Samples",
filter=rownames(ica$S))
colour <- attr(groups, "Colour")
} else {
groups <- NULL
colour <- "black"
}
size <- input$plotCex
alpha <- input$plotOpacity
})
output$scatterplot <- renderPairsD3({
plotICA(ica, components, groups, col=unname(colour), big=TRUE,
leftmar=15, opacity=alpha, cex=size)
})
hide("noClusteringUI", animType="fade")
show("clusteringUI", animType="fade")
updateSliderInput(session, "kmeansNstart", max=nrow(ica$S), value=100)
updateSliderInput(session, "claraSamples", max=nrow(ica$S), value=50)
})
clusterICAset(session, input, output)
}
attr(icaUI, "loader") <- "dimReduction"
attr(icaUI, "name") <- "Independent Component Analysis (ICA)"
attr(icaServer, "loader") <- "dimReduction"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.