#' @rdname appUI
#'
#' @importFrom shinyjs hidden disabled
#' @importFrom shiny actionLink downloadLink selectizeInput uiOutput tags
#' actionButton checkboxGroupInput helpText tagList sidebarLayout mainPanel
#' @importFrom shinyBS bsCollapse bsCollapsePanel
#' @importFrom DT dataTableOutput
#' @importFrom highcharter highchartOutput
diffExpressionTableUI <- function(id) {
ns <- NS(id)
pvalueAdjust <- list("No p-value adjustment"="none",
"False Discovery Rate"=c(
"Benjamini-Hochberg's method"="BH",
"Benjamini-Yekutieli's method"="BY"),
"Family-wise Error Rate"=c(
"Bonferroni correction"="bonferroni",
"Holm's method"="holm",
"Hochberg's method"="hochberg",
"Hommel's method"="hommel"))
statAnalysesOptions <- div(
id=ns("statAnalysesOptions"),
selectizeInput(ns("geneExpr"), "Gene expression dataset", choices=NULL,
width="100%"),
bsCollapse(
open=c("lmFit"),
bsCollapsePanel(
tagList(icon("compress"), "Gene-wise linear model fit"),
value="lmFit",
helpText(tags$code("limma::lmFit()"), "is used to fit a linear",
"model per gene based on a design matrix prepared",
"from two selected groups."),
selectGroupsUI(
ns("diffGroups"), maxItems=2, type="Samples",
label="Select two groups for differential expression")),
bsCollapsePanel(
tagList(icon("adjust"), "Differential expression statistics"),
value="eBayes",
helpText(
tags$code("limma::eBayes()"), "is used to compute",
"moderated t-tests and log-odds of differential expression",
"by empirical Bayes moderation of the standard errors",
"towards a common value."),
sliderInput(
ns("ebayesProportion"), min=0, max=1, value=0.01, step=0.01,
width="100%",
"Assumed proportion of differentially expressed genes"),
hr(),
helpText("Assumed limit for the standard deviation of log2",
"fold-changes for differentially expressed genes:"),
fluidRow(
column(6, numericInput(ns("ebayesStdevMin"), "Lower limit",
min=0, value=0.1, step=0.1,
width="100%")),
column(6, numericInput(ns("ebayesStdevMax"), "Upper limit",
min=0, value=4, step=0.1,
width="100%"))))),
tags$b("Extra analyses that are performed:"),
tags$ul(tags$li("Variance and median expression"),
tags$li("Distribution of gene expression per group")),
selectizeInput(ns("pvalueAdjust"), selected="BH", width="100%",
"P-value adjustment", pvalueAdjust),
processButton(ns("startAnalyses"), "Perform analyses"))
labelsPanel <- tabPanel(
"Labels",
bsCollapse(
bsCollapsePanel(
"Label top differentially expressed genes", value="top",
checkboxInput(
ns("labelTopEnable"), width="100%",
"Enable labelling of top differentially expressed genes"),
div(id=ns("labelTopOptions"),
selectizeInput(
ns("labelSortBy"), choices=NULL, width="100%",
"Sort top differentially expressed genes by"),
radioButtons(ns("labelOrder"), "Sorting order",
choices=c("Decreasing order"="decreasing",
"Increasing order"="increasing")),
sliderInput(
ns("labelTop"), value=10, min=1, max=1000,
width="100%", "Number of top genes to label"))),
bsCollapsePanel(
"Label selected genes",
value="genes", checkboxInput(
ns("labelGeneEnable"), width="100%",
"Enable labelling of selected genes"),
selectizeInput(ns("labelGenes"), "Genes to label", width="100%",
choices=c("Type to search for a gene..."=""),
multiple=TRUE))),
actionButton(ns("unlabelPoints"), "Remove labels"),
processButton(ns("labelPoints"), "Label points"))
eventOptions <- prepareEventPlotOptions(ns("eventOptions"), ns, labelsPanel)
sidebar <- sidebar(
bsCollapse(
id=ns("diffExpressionCollapse"), open="statAnalyses",
bsCollapsePanel(
list(icon("cogs"), "Perform differential expression analysis"),
value="statAnalyses", style="info",
errorDialog(
paste("Gene expression data is required for",
"differential expression."),
id=ns("missingGeneExpr"),
buttonLabel="Load data",
buttonIcon="plus-circle",
buttonId=ns("loadGeneExpr")),
hidden(statAnalysesOptions)),
bsCollapsePanel(
list(icon("binoculars"), "Plot options and table filtering"),
style="info", value="plotEvents",
errorDialog(
"Differential expression analysis not yet performed.",
id=ns("missingDiffAnalyses")),
hidden(eventOptions))))
downloadTable <- div(
class="btn-group dropup",
tags$button(class="btn btn-default dropdown-toggle", type="button",
"data-toggle"="dropdown", "aria-haspopup"="true",
"aria-expanded"="false", icon("download"),
"Save table", tags$span(class="caret")),
tags$ul(class="dropdown-menu",
tags$li(downloadLink(ns("downloadAll"), "All data")),
tags$li(downloadLink(ns("downloadSubset"), "Filtered data"))))
groupCreation <- div(
class="btn-group dropup",
tags$button(class="btn btn-default dropdown-toggle", type="button",
"data-toggle"="dropdown", "aria-haspopup"="true",
"aria-expanded"="false", icon("object-group"),
"Create group based on...", tags$span(class="caret")),
tags$ul(class="dropdown-menu",
disabled(tags$li(id=ns("groupBySelectedContainer"),
actionLink(ns("groupBySelected"),
"Selected genes"))),
tags$li(actionLink(ns("groupByDisplayed"),
"Genes displayed in the table"))))
tagList(
uiOutput(ns("modal")),
sidebarLayout(
sidebar, mainPanel(
ggplotUI(ns("ge-volcano")),
dataTableOutput(ns("statsTable")),
hidden(div(id=ns("tableToolbar"), class="btn-toolbar",
role="toolbar", downloadTable, groupCreation)),
highchartOutput(ns("highchartsSparklines"), 0, 0))))
}
performSimpleDiffExpr <- function(geneExpr, groups, pvalueAdjust="BH",
ebayesProportion=0.01, ebayesStdevMin=0.1,
ebayesStdevMax=0.1, geneExprName=NULL,
inputID="sparklineInput") {
# Prepare groups of samples to analyse and filter samples not available in
# the selected groups from the gene expression data
stopifnot(
"Only 2 groups are currently supported"=length(unique(groups)) == 2)
groups <- discardOutsideSamplesFromGroups(groups, colnames(geneExpr))
if (!is(geneExpr, "EList")) {
geneExpr <- geneExpr[ , unlist(groups), drop=FALSE]
} else {
geneExpr <- geneExpr[ , unlist(groups)]
}
isFromGroup1 <- colnames(geneExpr) %in% groups[[1]]
design <- cbind(1, ifelse(isFromGroup1, 1, 0))
# Fit a gene-wise linear model based on selected groups
fit <- lmFit(geneExpr, design)
# Calculate moderated t-statistics and DE log-odds
useLimmaTrend <- !is(geneExpr, "EList")
if (useLimmaTrend) fit <- as.matrix(fit)
stats <- eBayes(fit, proportion=ebayesProportion,
trend=useLimmaTrend,
stdev.coef.lim=c(ebayesStdevMin, ebayesStdevMax))
# Prepare data summary
summary <- topTable(stats, number=nrow(fit), coef=2, sort.by="none",
adjust.method=pvalueAdjust, confint=TRUE)
summary$ID <- NULL
names(summary) <- c(
"log2 Fold-Change", "CI (low)", "CI (high)",
"Average expression", "moderated t-statistics", "p-value",
paste0("p-value (", pvalueAdjust, " adjusted)"), "B-statistics")
attr(summary, "groups") <- groups
# Calculate basic statistics and density plots
stats <- diffAnalyses(geneExpr, groups, c("basicStats", "density"),
pvalueAdjust=NULL, geneExpr=geneExprName,
inputID=inputID)
final <- cbind(stats[ , c(1, 5:6)], summary,
stats[ , 7:ncol(stats)])
return(final)
}
#' Set of functions to perform differential analyses
#'
#' @importFrom shinyBS updateCollapse
#' @importFrom limma eBayes lmFit topTable
#'
#' @inheritParams appServer
#' @inherit psichomics return
#' @keywords internal
diffExpressionSet <- function(session, input, output) {
ns <- session$ns
observe({
geneExpr <- getGeneExpression()
if (is.null(geneExpr)) {
show("missingGeneExpr")
hide("statAnalysesOptions")
} else {
updateSelectizeInput(session, "geneExpr",
choices=rev(names(geneExpr)))
hide("missingGeneExpr")
show("statAnalysesOptions")
}
})
performDiffExpression <- reactive({
totalTime <- startProcess("startAnalyses")
geneExpr <- getGeneExpression(input$geneExpr, EList=TRUE)
groups <- getSelectedGroups(input, "diffGroups", "Samples",
filter=colnames(geneExpr))
diffExpr <- performSimpleDiffExpr(
geneExpr, groups,
pvalueAdjust=input$pvalueAdjust,
ebayesProportion=input$ebayesProportion,
ebayesStdevMin=input$ebayesStdevMin,
ebayesStdevMax=input$ebayesStdevMax,
geneExprName=input$geneExpr,
inputID=ns("statsTable_diffExpr_last_clicked"))
setDifferentialExpression(diffExpr)
# setDifferentialExpressionSurvival(NULL)
updateCollapse(session, "diffExpressionCollapse", "plotEvents")
endProcess("startAnalyses", totalTime)
})
# Perform statistical analyses
observeEvent(input$startAnalyses, {
isolate({
ge <- getGeneExpression()
diffExpr <- getDifferentialExpression()
groups <- input$diffGroups
})
if ( is.null(ge) ) {
missingDataModal(session, "Gene expression", ns("missingGeneExpr"))
} else if ( is.null(groups) || length(input$diffGroups) != 2 ) {
errorModal(session, "Select two groups",
"Currently, two groups are required for differential",
"expression analysis. Please select two groups.",
caller="Differential expression analysis")
} else if ( !is.null(diffExpr) ) {
warningModal(session, "Differential expression already performed",
"Do you wish to discard the current results?",
footer=actionButton(
ns("replace"), "Discard", class="btn-warning",
"data-dismiss"="modal"),
caller="Differential expression analysis")
} else {
performDiffExpression()
}
})
# Replace previously performed differential analyses
observeEvent(input$replace, {
performDiffExpression()
# Reset previous results from differential analyses
setDifferentialExpressionFiltered(NULL)
setZoom("ge-volcano", NULL)
setSelectedPoints("ge-volcano", NULL)
setHighlightedPoints("ge-volcano", NULL)
# setDifferentialExpressionSurvival(NULL)
setLabelledPoints("ge-volcano", NULL)
})
# Go to differential analysis when clicking on density plot
observe(processClickRedirection(input$statsTable_diffExpr_last_clicked))
}
#' @rdname appServer
diffExpressionTableServer <- function(input, output, session) {
selectGroupsServer(session, "diffGroups", "Samples")
observeEvent(input$loadClinical, missingDataGuide("Clinical data"))
observeEvent(input$loadGeneExpr, missingDataGuide("Gene expression"))
observeEvent(input$missingGeneExpr, missingDataGuide("Gene expression"))
diffExpressionSet(session, input, output)
analysesPlotSet(
session, input, output, "GE", "ge-volcano", getDifferentialExpression,
getDifferentialExpressionFiltered, getDifferentialExpressionSurvival)
analysesTableSet(
session, input, output, "GE", "ge-volcano", getDifferentialExpression,
getDifferentialExpressionFiltered, setDifferentialExpressionFiltered,
getDifferentialExpressionSurvival, getDifferentialExpressionColumns,
setDifferentialExpressionColumns, getDifferentialExpressionResetPaging,
setDifferentialExpressionResetPaging)
# # Optimal survival difference given a gene expression cutoff per gene
# optimSurvDiffSet(session, input, output)
}
attr(diffExpressionTableUI, "loader") <- "diffExpression"
attr(diffExpressionTableUI, "name") <- "Exploratory (multiple genes)"
attr(diffExpressionTableUI, "selectEvent") <- FALSE
attr(diffExpressionTableServer, "loader") <- "diffExpression"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.