plotTargetingDrugsVSsimilarPerturbations | R Documentation |
Plot similar perturbations against predicted targeting drugs
plotTargetingDrugsVSsimilarPerturbations(
targetingDrugs,
similarPerturbations,
column,
labelBy = "pert_iname",
quantileThreshold = 0.25,
showAllScores = FALSE,
keyColTargetingDrugs = NULL,
keyColSimilarPerturbations = NULL
)
targetingDrugs |
|
similarPerturbations |
|
column |
Character: column to plot (must be available in both databases) |
labelBy |
Character: column in |
quantileThreshold |
Numeric: quantile (between 0 and 1) to highlight values of interest |
showAllScores |
Boolean: show all scores? If |
keyColTargetingDrugs |
Character: column from |
keyColSimilarPerturbations |
Character: column from
|
ggplot2
plot
Other functions related with the ranking of CMap perturbations:
as.table.referenceComparison()
,
filterCMapMetadata()
,
getCMapConditions()
,
getCMapPerturbationTypes()
,
loadCMapData()
,
loadCMapZscores()
,
parseCMapID()
,
plot.perturbationChanges()
,
plot.referenceComparison()
,
prepareCMapPerturbations()
,
print.similarPerturbations()
,
rankSimilarPerturbations()
Other functions related with the prediction of targeting drugs:
as.table.referenceComparison()
,
listExpressionDrugSensitivityAssociation()
,
loadExpressionDrugSensitivityAssociation()
,
plot.referenceComparison()
,
predictTargetingDrugs()
# Rank similarity against CMap compound perturbations
similarPerts <- rankSimilarPerturbations(diffExprStat,
cmapPerturbationsCompounds)
# Predict targeting drugs
gdsc <- loadExpressionDrugSensitivityAssociation("GDSC 7")
predicted <- predictTargetingDrugs(diffExprStat, gdsc)
plotTargetingDrugsVSsimilarPerturbations(predicted, similarPerts,
"spearman_rank")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.