# scatterplotDonorTargetTest.R
# from CSReport_v1.4.3.R
#' scatterplotDonorTargetTest
#'
#' This function is called by CellScoreReport to make a scatterplot of test and
#' standard samples (donor and target).
#' @param test.data a data.frame of CellScore values as calculated by
#' CellScore(), for a group of test samples.
#' @param cellscore a data.frame of CellScore values as calculated by
#' CellScore().
#' @param index.plot a logical variable, with TRUE meaning sample index should
#' be plotted for easy identification of spots. Default is FALSE.
#' @return This function outputs the plot on the active graphical device
#' and returns invisibly NULL.
#' @keywords scatterplot donor target
#' @export
#' @importFrom graphics par plot text points legend
#' @importFrom grDevices densCols
#' @importFrom RColorBrewer brewer.pal
#' @examples
#' \dontrun{
#' ## Load the expression set for the standard cell types
#' library(Biobase)
#' library(hgu133plus2CellScore) # eset.std
#'
#' ## Locate the external data files in the CellScore package
#' rdata.path <- system.file("extdata", "eset48.RData", package = "CellScore")
#' tsvdata.path <- system.file("extdata", "cell_change_test.tsv",
#' package = "CellScore")
#'
#' if (file.exists(rdata.path) && file.exists(tsvdata.path)) {
#'
#' ## Load the expression set with normalized expressions of 48 test samples
#' load(rdata.path)
#'
#' ## Import the cell change info for the loaded test samples
#' cell.change <- read.delim(file= tsvdata.path, sep="\t",
#' header=TRUE, stringsAsFactors=FALSE)
#'
#' ## Combine the standards and the test data
#' eset <- combine(eset.std, eset48)
#'
#' ## Generate the on/off scores for the combined data
#' individ.OnOff <- OnOff(eset, cell.change, out.put="individual")
#'
#' ## Generate cosine similarity for the combined data
#' ## NOTE: May take 1-2 minutes on the full eset object
#' cs <- CosineSimScore(eset, cell.change, iqr.cutoff=0.05)
#'
#' ## Generate the CellScore values for all samples
#' cellscore <- CellScore(data=eset, transitions=cell.change, scores.onoff=individ.OnOff$scores,
#' scores.cosine=cs$cosine.samples)
#' ## Get the CellScore fvalues rom valid transitions defined by cell.change
#' ## table
#' plot.data <- extractTransitions(cellscore, cell.change)
#'
#' ## Define a plot group variable
#' plot.data$plot_group <- paste(plot.data$experiment_id,
#' plot.data$cxkey.subcelltype, sep="_")
#' ## Sort the scores 1) by target 2) by donor 3) by study
#' plot.data.ordered <- plot.data[order(plot.data$target,
#' plot.data$donor_tissue,
#' plot.data$experiment_id), ]
#'
#' ## How many plot_groups are there?
#' table(plot.data$plot_group)
#'
#' ## pick one plot_group to plot
#' group <- unique(plot.data$plot_group)[4]
#'
#' ## Select scores for only one plot group
#' test.data <- plot.data.ordered[plot.data.ordered$plot_group %in% group, ]
#'
#' ## save current graphical parameters
#' old.par <- par(no.readonly=TRUE)
#'
#' ## Plot: this will plot a 2-paneled plot
#' par(mfrow=c(1,2))
#' scatterplotDonorTargetTest(test.data, cellscore, FALSE)
#'
#' ## Reset graphical parameters
#' par(old.par)
#'
#' }
#' }
scatterplotDonorTargetTest <- function(test.data, cellscore, index.plot=FALSE) {
###########################################################################
## PART 0. Check function arguments
###########################################################################
fun.main <- deparse(match.call()[[1]])
.stopIfNotDataFrame(test.data, 'test.data', fun.main)
.stopIfNotDataFrame(cellscore, 'cellscore', fun.main)
############################################################################
## PART I. Data preparation
############################################################################
celltype <- list(donor=test.data$start[1],
target=test.data$target[1],
test=test.data$sub_cell_type1[1])
## Collect all data tables in one list
## Subset columns using column names: "donor.like","target.like","index"
sel.cols <- match(c("donor.like","target.like","index"),
colnames(cellscore))
data.list <- list(target=NULL, donor=NULL, test=NULL)
for (group in names(data.list)) {
if (group == "test"){
data.list[[group]] <- test.data[, sel.cols]
}else{
sel.trans <- cellscore$start == celltype$donor &
cellscore$target == celltype$target
sel.group <- cellscore$general_cell_type == celltype[[group]]
data.list[[group]] <- cellscore[ sel.trans & sel.group, sel.cols]
}
}
## Colour mapping
col.table <- .colourMapping(test.data$sub_cell_type1)
############################################################################
## PART II. Plot
############################################################################
## A. Scatter plot
## Set boundaries so that the x- and y-axes have the same scale
## Limits should be based on the standards
xylim <- c(min(c(0.7, unlist(data.list[c("donor", "target")]))), 2)
par(mar=c(4, 6, 4, 2) + 0.1)
plot(xylim, xylim, type="n",
xlab="Donor-like score", ylab="Target-like score",
cex.lab=1.5, cex.axis=1.3, cex.main=1.5,
main="CellScore Components", xlim=xylim, ylim=xylim )
lapply(names(data.list),
function(group){
## 1. Set the colour and plotting symbol
if (group == "test"){
col.group <- col.table$col
pch.group <- 4
}else{
col.group <-
try(densCols(data.list[[group]],
colramp=.getMainColours(group, TRUE)),
silent=TRUE)
if (class(col.group) == "try-error") {
col.group <- .getMainColours(group, FALSE)
}
pch.group <- 20
}
## 2. Show samples by group
points(data.list[[group]][, -3], # remove the index
col=col.group, pch=pch.group, cex=1.5)
## 3. Add text annotaions for tracking samples
if (index.plot) {
text(data.list[[group]][, -3],
labels=data.list[[group]][, 3], cex=0.7)
}
})
## B. Legend
## Plot it in a 2nd field since it could be very large
plot(test.data$donor.like, test.data$target.like, type="n", xaxt="n",
yaxt="n", xlab="", ylab="", bty="n", main="", cex.main=0.8)
col.table = unique(col.table)
leg.vector <- sapply(names(celltype),
function(x){
if (x != "test"){
type <- celltype[[x]]
}else{
type <- col.table$group
}
paste0(type, " (", nrow(data.list[[x]]),")")
})
legend("topleft",
fill=c(.getMainColours("donor", FALSE),
.getMainColours("target", FALSE),
NA),
border=FALSE,
legend=unlist(leg.vector),
pch=c(NA, NA, 4), col=c(NA, NA, col.table$col),
pt.cex=1.5, cex=1.1,
title=paste0(test.data$experiment_id[1], ": ", "Transition from ",
celltype$donor," -> ", celltype$target))
invisible()
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.