#' Prioritise target genes
#'
#' Prioritise target genes based on a procedure:\cr
#' \enumerate{
#' \item{Disease-level: \code{keep_deaths}: }{
#' Keep only diseases with a certain age of death.}
#' \item{Disease-level: \code{severity_threshold_max}: }{
#' \preformatted{
#' Keep only diseases annotated as a certain degree of severity or greater
#' (filters on maximum severity per disease).}
#' }
#' \item{Phenotype-level: \code{prune_ancestors}: }{
#' \preformatted{
#' Remove redundant ancestral phenotypes when at least one of their
#' descendants already exist.}
#' }
#' \item{Phenotype-level: \code{keep_descendants}: }{
#' \preformatted{
#' Remove phenotypes belonging to a certain branch of the HPO,
#' as defined by an ancestor term.}
#' }
#' \item{Phenotype-level: \code{keep_ont_levels}: }{
#' Keep only phenotypes at certain absolute ontology levels within the HPO.}
#' \item{Phenotype-level: \code{pheno_ndiseases_threshold}: }{
#' The maximum number of diseases each phenotype can be associated with.}
#' \item{Phenotype-level: \code{keep_tiers}: }{
#' Keep only phenotypes with high severity Tiers.}
#' \item{Phenotype-level: \code{severity_threshold}: }{
#' Keep only phenotypes with mean Severity equal to or below the threshold.}
#' \item{Phenotype-level: \code{gpt_filters}: }{
#' \preformatted{
#' Keep only phenotypes with certain GPT annotations in specific
#' severity metrics.}
#' }
#' \item{Phenotype-level: \code{severity_score_gpt_threshold}: }{
#' Keep only phenotypes with a minimum GPT severity score.}
#' \item{Phenotype-level: \code{info_content_threshold}: }{
#' \preformatted{
#' Keep only phenotypes with a minimum information criterion score
#' (computed from the HPO).}
#' }
#' \item{Symptom-level: \code{pheno_frequency_threshold}: }{
#' \preformatted{
#' Keep only phenotypes with mean frequency equal to or above the threshold
#' (i.e. how frequently a phenotype is associated with any diseases in
#' which it occurs).}
#' }
#' \item{Symptom-level: \code{keep_onsets}: }{
#' Keep only symptoms with a certain age of onset.}
#' \item{Symptom-level: \code{symptom_p_threshold}: }{
#' Uncorrected p-value threshold to filter cell type-symptom associations by.}
#' \item{Symptom-level: \code{symptom_intersection_threshold}: }{
#' \preformatted{
#' Minimum proportion of genes overlapping between a symptom gene list
#' (phenotype-associated genes in the context of a particular disease)
#' and the phenotype-cell type association driver genes.}
#' }
#' \item{Cell type-level: \code{q_threshold}: }{
#' \preformatted{
#' Keep only cell type-phenotype association results at q<=0.05.}
#' }
#' \item{Cell type-level: \code{effect_threshold}: }{
#' Keep only cell type-phenotype association results at effect size>=1.}
#' \item{Cell type-level: \code{keep_celltypes}: }{
#' Keep only terminally differentiated cell types.}
#' \item{Gene-level: \code{keep_chr}: }{
#' Remove genes on non-standard chromosomes.}
#' \item{Gene-level: \code{evidence_score_threshold}: }{
#' \preformatted{
#' Remove genes that are below an aggregate phenotype-gene
#' evidence score threshold.}
#' }
#' \item{Gene-level: \code{gene_size}: }{
#' Keep only genes <4.3kb in length.}
#' \item{Gene-level: \code{add_driver_genes}: }{
#' \preformatted{
#' Keep only genes that are driving the association with a given phenotype
#' (inferred by the intersection of phenotype-associated genes and gene with
#' high-specificity quantiles in the target cell type).}
#' }
#' \item{Gene-level: \code{keep_biotypes}: }{
#' Keep only genes belonging to certain biotypes.}
#' \item{Gene-level: \code{gene_frequency_threshold}: }{
#' \preformatted{
#' Keep only genes at or above a certain mean frequency threshold
#' (i.e. how frequently a gene is associated with a given phenotype
#' when observed within a disease).}
#' }
#' \item{Gene-level: \code{keep_specificity_quantiles}: }{
#' \preformatted{
#' Keep only genes in top specificity quantiles
#' from the cell type dataset (CTD).}
#' }
#' \item{Gene-level: \code{keep_mean_exp_quantiles}: }{
#' \preformatted{
#' Keep only genes in top mean expression quantiles
#' from the cell type dataset (CTD).}
#' }
#' \item{Gene-level: \code{symptom_gene_overlap}: }{
#' \preformatted{
#' Ensure that genes nominated at the phenotype-level also
#' appear in the genes overlapping at the cell type-specific symptom-level.}
#' }
#' \item{All levels: \code{sort_cols}: }{
#' \preformatted{
#' Sort candidate targets by one or more columns
#' (e.g. "severity_score_gpt", "q").
#' }
#' }
#' \item{All levels: \code{top_n}: }{
#' \preformatted{
#' Only return the top N targets per variable group
#' (specified with the "group_vars" argument).
#' For example, setting "group_vars" to "hpo_id" and "top_n" to 1 would
#' only return one target (row) per phenotype ID after sorting.}
#' }
#' }
#'
#' Term key:\cr
#' \itemize{
#' \item{Disease: }{
#' \preformatted{
#' A disease defined in the database
#' OMIM, DECIPHER and/or Orphanet.}
#' }
#' \item{Phenotype: }{A clinical feature associated with one or more diseases.}
#' \item{Symptom: }{
#' \preformatted{
#' A phenotype within the context of a particular disease.
#' Within a given phenotype, there may be multiple symptoms with
#' partially overlapping genetic mechanisms.}
#' }
#' \item{Assocation: }{
#' \preformatted{
#' A cell type-specific enrichment test result conducted
#' at the disease-level, phenotype-level, or symptom-level.}
#' }
#' }
#' @param keep_celltypes Cell type to keep.
#' @param sort_cols How to sort the rows using \link[data.table]{setorderv}.
#' \code{names(sort_cols)} will be supplied to the \code{cols=} argument
#' and values will be supplied to the \code{order=} argument.
#' @param top_n Top N genes to keep when grouping by \code{group_vars}.
#' @param group_vars Columns to group by when selecting \code{top_n} genes.
#' @param gene_size Min/max gene size (important for therapeutics design).
#' @param keep_biotypes Which gene biotypes to keep.
#' (e.g. "protein_coding", "processed_transcript", "snRNA",
#' "lincRNA", "snoRNA", "IG_C_gene")
#' @param keep_specificity_quantiles Which cell type
#' specificity quantiles to keep (max quantile is 40).
#' @param keep_mean_exp_quantiles Which cell type
#' mean expression quantiles to keep (max quantile is 40).
#' @param return_report If \code{TRUE}, will return a named list containing a
#' \code{report} that shows the number of
#' phenotypes/celltypes/genes remaining after each filtering step.
#' @param symptom_intersection_threshold Minimum proportion of genes
#' overlapping between a symptom gene list
#' (phenotype-associated genes in the context of a particular disease)
#' and the phenotype-cell type association driver genes
#' @param severity_threshold_max The max severity score that a phenotype can
#' have across any disease.
#' @param severity_score_gpt_threshold The minimum GPT severity score that a
#' phenotype can have across any disease.
#' @param run_prune_ancestors Prune redundant ancestral terms if any of their
#' descendants are present. Passes to \link[KGExplorer]{prune_ancestors}.
#' @param ctd_list A named list of CellTypeDataset objects each
#' created with \link[EWCE]{generate_celltype_data}.
#' @param effect_var Name of the effect size column in the \code{results}.
#' @param info_content_threshold Minimum phenotype information content
#' threshold.
#' @inheritParams ewce_para
#' @inheritParams ggnetwork_plot_full
#' @inheritParams EWCE::bootstrap_enrichment_test
#' @inheritParams HPOExplorer::phenos_to_granges
#' @inheritParams HPOExplorer::add_
#' @returns A data.table of the prioritised phenotype- and
#' cell type-specific gene targets.
#'
#' @export
#' @import HPOExplorer
#' @import data.table
#' @importFrom utils head
#' @examples
#' results = load_example_results()[q<0.05]
#' out <- prioritise_targets(results=results)
prioritise_targets <- function(#### Input data ####
results = load_example_results(),
ctd_list = load_example_ctd(
c("ctd_DescartesHuman.rds",
"ctd_HumanCellLandscape.rds"),
multi_dataset=TRUE),
phenotype_to_genes =
HPOExplorer::load_phenotype_to_genes(),
hpo = HPOExplorer::get_hpo(),
#### Disease-level ####
keep_deaths =
HPOExplorer::list_deaths(
exclude=c("Miscarriage",
"Stillbirth",
"Prenatal death"),
include_na = TRUE
),
#### Phenotype level ####
keep_descendants = c("Phenotypic abnormality"),
keep_ont_levels = NULL,
pheno_ndiseases_threshold = NULL,
gpt_filters = NULL,
severity_score_gpt_threshold=20,
keep_tiers = NULL,#c(1,2,NA),
severity_threshold_max = NULL,
info_content_threshold=8,
run_prune_ancestors=TRUE,
#### Symptom level ####
severity_threshold = NULL,#c(2,NA),
pheno_frequency_threshold = NULL,
keep_onsets =
HPOExplorer::list_onsets(
# exclude=c("Antenatal",
# "Fetal",
# "Congenital"),
include_na = TRUE
),
#### Celltype level ####
effect_var="logFC",
q_threshold = 0.05,
effect_threshold = 1,
# symptom_p_threshold = NULL,
symptom_intersection_threshold = .25,
keep_celltypes = NULL,#terminal_celltypes()$CellType,
#### Gene level ####
evidence_score_threshold = 15,
keep_chr = c(seq(22),"X","Y"),
gene_size = list("min"=0,
"max"=Inf),
gene_frequency_threshold = NULL,
keep_biotypes = NULL,
keep_specificity_quantiles = seq(30,40),
keep_mean_exp_quantiles = seq(30,40),
# symptom_gene_overlap = TRUE,
#### Sorting ####
sort_cols = c("severity_score_gpt"=-1,
"q"=1,
"logFC"=-1,
"specificity"=-1,
"mean_exp"=-1,
"pheno_freq_mean"=-1,
"gene_freq_mean"=-1,
"width"=1),
top_n = NULL,
group_vars = c(
# "disease_id",
"hpo_id"
# "CellType"
),
return_report = TRUE,
verbose = TRUE){
q <- CellType <- width <- seqnames <- gene_biotype <-
Severity_score <- cl_name <- cl_id <- Severity_score_max <-
info_content <- severity_score_gpt <- NULL;
force(results)
force(ctd_list)
force(hpo)
force(phenotype_to_genes)
t1 <- Sys.time()
messager("Prioritising gene targets.",v=verbose)
#### Add logFC ####
results <- add_logfc(results)
#### add_hpo_id #####
results <- HPOExplorer::add_hpo_id(phenos = results,
hpo = hpo)
results <- HPOExplorer::add_hpo_name(phenos = results,
hpo = hpo)
#### add_hpo_definition #####
results <- HPOExplorer::add_hpo_definition(phenos = results,
verbose = verbose)
#### add_info_content #####
results <- HPOExplorer::add_info_content(phenos = results,
hpo = hpo)
#### Add disease columns ####
## Add this early so I can get a count of the number of diseases
## in the final report plot.
## Add disease descriptions AFTER all other steps to avoid memory explosion.
results <- HPOExplorer::add_disease(phenos = results,
add_descriptions = FALSE,
allow.cartesian = TRUE)
#### start ####
rep_dt <- report(dt = results,
step = "start",
verbose = verbose)
#### Filter associations #####
#### q_threshold ####
if(!is.null(q_threshold)){
messager("Filtering @ q-value <=",q_threshold,v=verbose)
results <- results[q<=q_threshold,]
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "q_threshold",
verbose = verbose)
#### effect_threshold ####
if(!is.null(effect_threshold)){
messager("Filtering @",effect_var,">=",effect_threshold,v=verbose)
results <- results[get(effect_var)>=effect_threshold,]
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "effect_threshold",
verbose = verbose)
# #### Filter symptoms ####
# ## Do these steps early bc it will drastically reduce data size
# ## and thus speed up all subsequent steps.
# #### Filter smyptom overlap ####
# results2 <- add_driver_genes(results = results,
# ctd_list = ctd_list,
# keep_quantiles = keep_specificity_quantiles)
# #### symptom_p_threshold ####
# if(!is.null(symptom_p_threshold)){
# results <- results[symptom.pval<symptom_p_threshold]
# }
# rep_dt <- report(dt = results,
# rep_dt = rep_dt,
# step = "symptom_p_threshold",
# verbose = verbose)
# #### symptom_intersection_threshold ####
# if("intersection_size" %in% names(results)){
# if(!is.null(symptom_intersection_threshold)){
# results <- results[intersection_size>=symptom_intersection_threshold]
# }
# rep_dt <- report(dt = results,
# rep_dt = rep_dt,
# step = "symptom_intersection_threshold",
# verbose = verbose)
# }
#### Filter diseases ####
#### keep_deaths ####
results <- HPOExplorer::add_death(phenos = results,
keep_deaths = keep_deaths,
agg_by = "disease_id",
allow.cartesian = TRUE)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_deaths",
verbose = verbose)
#### Filter phenotypes ####
#### keep_descendants ####
results <- HPOExplorer::add_ancestor(phenos = results,
hpo = hpo,
keep_descendants = keep_descendants)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_descendants",
verbose = verbose)
#### keep_ont_levels ####
results <- HPOExplorer::add_ont_lvl(phenos = results,
absolute = TRUE,
hpo = hpo,
keep_ont_levels = keep_ont_levels)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_ont_levels",
verbose = verbose)
#### gpt_filters ####
## Add GPT annotations
results <- HPOExplorer::add_gpt_annotations(phenos = results,
gpt_filters = gpt_filters)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "gpt_filters",
verbose = verbose)
#### severity_score_gpt_threshold ####
if(!is.null(severity_score_gpt_threshold)){
results <- results[severity_score_gpt>=severity_score_gpt_threshold,]
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "severity_score_gpt_threshold",
verbose = verbose)
#### info_content_threshold ####
if(!is.null(info_content_threshold)){
results <- results[info_content>=info_content_threshold,]
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "info_content_threshold",
verbose = verbose)
#### keep_onsets ####
results <- HPOExplorer::add_onset(phenos = results,
keep_onsets = keep_onsets,
agg_by=c("disease_id","hpo_id"))
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_onsets",
verbose = verbose)
#### keep_tiers ####
results <- HPOExplorer::add_tier(phenos = results,
hpo = hpo,
keep_tiers = keep_tiers,
verbose = verbose)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_tiers",
verbose = verbose)
#### severity_threshold ####
results <- HPOExplorer::add_severity(phenos = results,
severity_threshold = severity_threshold)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "severity_threshold",
verbose = verbose)
#### severity_threshold_max ####
## i.e. is a phenotype always severe, regardless of disease?
if(!is.null(severity_threshold_max)){
results <- results[,Severity_score_max:=gsub(
-Inf,NA,max(Severity_score,na.rm = TRUE)),
by="hpo_id"][Severity_score_max<=severity_threshold_max]
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "severity_threshold_max",
verbose = verbose)
#### pheno_ndiseases_threshold ####
results <- HPOExplorer::add_ndisease(
phenos = results,
pheno_ndiseases_threshold = pheno_ndiseases_threshold,
verbose = verbose)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "pheno_ndiseases_threshold",
verbose = verbose)
#### pheno_frequency_threshold ####
results <- HPOExplorer::add_pheno_frequency(
phenos = results,
pheno_frequency_threshold = pheno_frequency_threshold)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "pheno_frequency_threshold",
verbose = verbose)
#### Filter celltypes ####
### Fix celltypes
results[,CellType:=EWCE::fix_celltype_names(CellType,
make_unique = FALSE)]
if(!is.null(keep_celltypes)){
all_celltypes <- unique(results$CellType)
results <- results[CellType %in% keep_celltypes|
cl_name %in% keep_celltypes|
cl_id %in% keep_celltypes,]
valid_celltypes <- unique(results$CellType)
messager(formatC(length(valid_celltypes),big.mark = ","),"/",
formatC(length(all_celltypes)),
"of cell types kept.",v=verbose)
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_celltypes",
verbose = verbose)
#### Filter genes ####
#### Add genes ####
results <- HPOExplorer::add_genes(phenos=results,
phenotype_to_genes=phenotype_to_genes,
hpo = hpo)
#### symptom_gene_overlap ####
results <- HPOExplorer::phenos_to_granges(
phenos = results,
phenotype_to_genes = phenotype_to_genes,
hpo = hpo,
# gene_col = if(isTRUE(symptom_gene_overlap)) "intersection" else NULL,
keep_chr = NULL,
split.field = NULL,
as_datatable = TRUE,
verbose = verbose)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "symptom_gene_overlap",
verbose = verbose)
#### keep_chr ####
if(!is.null(keep_chr)){
messager("Filtering by keep_chr.",v=verbose)
results <- results[seqnames %in% keep_chr,]
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_chr",
verbose = verbose)
#### evidence_score_threshold ####
messager("Filtering by gene-disease association evidence.",
v=verbose)
results <- HPOExplorer::add_evidence(phenos = results,
# allow.cartesian = TRUE,
evidence_score_threshold = evidence_score_threshold)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "evidence_score_threshold",
verbose = verbose)
#### gene_size ####
if(!is.null(gene_size)){
messager("Filtering by gene size.",v=verbose)
ngenes <- length(unique(results$gene_symbol))
results <- results[width>gene_size$min & width<gene_size$max,]
messager(formatC(length(unique(results$gene_symbol)),big.mark = ","),"/",
formatC(ngenes,big.mark = ","),"genes kept.",v=verbose)
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "gene_size",
verbose = verbose)
#### keep_biotypes ####
if(!is.null(keep_biotypes)){
messager("Filtering by gene biotypes.",v=verbose)
results <- results[gene_biotype %in% keep_biotypes,]
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "keep_biotypes",
verbose = verbose)
##### keep_specificity_quantiles ####
##### keep_mean_exp_quantiles ####
results <- add_driver_genes(results = results,
ctd_list = ctd_list,
keep_quantiles = keep_specificity_quantiles,
metric = "specificity_quantiles",
group_var = c("hpo_id","disease_id")
)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "add_driver_genes",
verbose = verbose)
#### Symptom-level ####
results <- add_symptom_results(results = results,
q_threshold = q_threshold,
celltype_col="CellType",
ctd_list = ctd_list,
phenotype_to_genes = phenotype_to_genes,
keep_quantiles = keep_specificity_quantiles,
top_n = NULL,
drop_subthreshold=TRUE,
proportion_driver_genes_symptom_threshold=symptom_intersection_threshold)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "symptom_intersection_threshold",
verbose = verbose)
# ctd_out <- add_ctd(
# results = results,
# ctd = ctd,
# annotLevel = annotLevel,
# keep_specificity_quantiles = keep_specificity_quantiles,
# keep_mean_exp_quantiles = keep_mean_exp_quantiles,
# all.x = FALSE,
# rep_dt = rep_dt,
# verbose = verbose)
# results <- ctd_out$results;
# rep_dt <- ctd_out$rep_dt;
#### gene_frequency_threshold ####
results <- HPOExplorer::add_gene_frequency(
phenotype_to_genes = results,
gene_frequency_threshold = gene_frequency_threshold,
allow.cartesian = TRUE,
verbose = verbose)
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "gene_frequency_threshold",
verbose = verbose)
#### prune_ancestors #####
## Even though this is a phenotype-level filter, do this at the end when we
## know which phenotype we have left.
if(isTRUE(run_prune_ancestors)){
results <- KGExplorer::prune_ancestors(dat = results,
id_col = "hpo_id",
ont = hpo)
}
rep_dt <- report(dt = results,
rep_dt = rep_dt,
step = "prune_ancestors",
verbose = verbose)
#### Sort genes ####
# 1=ascending, -1=descending
messager("Sorting rows.",v=verbose)
sort_cols <- sort_cols[names(sort_cols) %in% names(results)]
data.table::setorderv(results,
cols = names(sort_cols),
order = unname(sort_cols),
na.last = TRUE)
#### top_n ####
if(is.null(top_n)){
top_targets <- results
} else {
messager("Finding top",top_n,"gene targets per:",
paste(group_vars,collapse = ", "),v=verbose)
top_targets <- results[,utils::head(.SD, top_n),
by = c(group_vars)]
rep_dt <- report(dt = top_targets,
rep_dt = rep_dt,
step = "top_n",
verbose = verbose)
}
#### end ####
rep_dt <- report(dt = top_targets,
rep_dt = rep_dt,
step = "end",
verbose = verbose)
## Add disease descriptions AFTER all other steps to avoid memory explosion.
top_targets <- HPOExplorer::add_disease(phenos = top_targets,
add_descriptions = TRUE,
allow.cartesian = TRUE)
## Add row diff
rep_dt$Rows_diff <- c(0,
rep_dt$Rows[seq(nrow(rep_dt)-1)+1] -
rep_dt$Rows[seq(nrow(rep_dt)-1)])
if(isTRUE(verbose)) round(difftime(Sys.time(),t1,units = "s"),0)
#### Return ####
if(isTRUE(return_report)){
return(list(top_targets=top_targets,
report=rep_dt))
} else {
return(top_targets)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.