#' @title scDensityPlot function
#' @description Visualize density plot in low dimensional embedding
#' @param object Seurat object
#' @param reduction Dimensional reduction to use, default reduction='umap'
#' @param title Figure title
#' @param split.by Name of a metadata column to split plot by
#' @param ncol Number of columns for display the plots
#' @param colors Vector of colours to use for n-colour gradient
#' @param digits Integer representing the number of decimal places reserved for
#' the legend, default digits=3
#'
#' @return ggplot object
#'
#' @import Seurat
#' @author Wei Zhang
#' @export
#'
scDensityPlot <- function(object = NULL, reduction = NULL, title = NULL,
split.by = NULL, ncol = NULL, colors = NULL,
digits = NULL) {
if (is.null(reduction)) {
if ("umap" %in% names(object)) {
reduction <- "umap"
} else if ("tsne" %in% names(object)) {
reduction <- "tsne"
} else if ("pca" %in% names(object)) {
reduction <- "pca"
} else {
stop("The reduction parameter does not support!
Please use 'umap', 'tsne', or 'pca' instead.\n")
}
}
if (is.null(title)) {
title <- "Density plot"
}
if (is.null(colors)) {
colors <- c("white", "gray99", "#FFEDA0", "red", "darkred")
}
if (is.null(digits)) digits <- 3
xmin <- xmax <- ymin <- ymax <- z.min <- z.max <- ..density.. <- NULL
ps <- function(data, z.min = z.min, z.max = z.max, title = NULL) {
p <- ggplot2::ggplot(data = data, ggplot2::aes(x = data[, 1], y = data[, 2]))
p <- p + ggplot2::stat_density2d(geom = "raster", interpolate = TRUE,
ggplot2::aes(fill = ..density..), contour = FALSE, na.rm = TRUE) +
ggplot2::scale_fill_gradientn(colors = colors, limits = c(z.min, z.max),
breaks = seq(z.min, z.max, length = 5),
labels = round(seq(z.min, z.max, length = 5), digits = digits)) +
cowplot::theme_cowplot() + ggplot2::guides(colour =
ggplot2::guide_legend(override.aes = list(size = 5))) +
ggplot2::labs(x = colnames(data)[1], y = colnames(data)[2], title = title)
p <- p + ggplot2::scale_x_continuous(limits = c(xmin, xmax),
breaks = seq(floor(xmin/5) * 5, ceiling(xmax/5) * 5, by = 5)) +
ggplot2::scale_y_continuous(limits = c(ymin, ymax), breaks =
seq(floor(ymin/5) * 5, ceiling(ymax/5) * 5, by = 5))
return(p)
}
pm <- function(data, z.min = z.min, z.max = z.max, title = NULL) {
p <- ggplot2::ggplot(data = data, ggplot2::aes(x = data[, 1], y = data[, 2]))
p <- p + ggplot2::stat_density2d(geom = "raster", interpolate = TRUE,
ggplot2::aes(fill = ..density..), contour = FALSE, na.rm = TRUE) +
ggplot2::scale_fill_gradientn(colors = colors,
limits = c(z.min, z.max), breaks = seq(z.min, z.max, length = 5),
labels = round(seq(z.min, z.max, length = 5), digits = digits)) +
cowplot::theme_cowplot() + ggplot2::guides(colour =
ggplot2::guide_legend(override.aes = list(size = 5))) +
ggplot2::labs(x = colnames(data)[1], y = colnames(data)[2], title = title)
p <- p + ggplot2::scale_x_continuous(limits = c(xmin, xmax),
breaks = seq(floor(xmin/5) * 5, ceiling(xmax/5) * 5, by = 5)) +
ggplot2::scale_y_continuous(limits = c(ymin, ymax),
breaks = seq(floor(ymin/5) * 5, ceiling(ymax/5) * 5, by = 5))
p <- p + ggplot2::theme(legend.position = "none")
return(p)
}
Data <- Seurat::Embeddings(object = object[[reduction]])[, c(1, 2)]
Data <- as.data.frame(Data)
m <- MASS::kde2d(x = Data[, 1], y = Data[, 2],
h = c(MASS::bandwidth.nrd(Data[, 1]), MASS::bandwidth.nrd(Data[, 2])),
n = 100, lims = c(range(Data[, 1]), range(Data[, 2])))
z.min <- min(m$z)
z.max <- max(m$z)
xmin <- min(Data[, 1])
xmax <- max(Data[, 1])
ymin <- min(Data[, 2])
ymax <- max(Data[, 2])
if (is.null(x = split.by)) return(ps(Data, z.min, z.max, title))
plots <- list()
z <- vector()
if (!is.null(x = split.by)) {
Data[, split.by] <- object[[split.by, drop = FALSE]]
if (is.null(ncol)) {
ncol = ceiling(sqrt(length(unique(Data[, split.by]))))
}
for (s in unique(Data[, split.by])) {
data <- Data[Data[, 3] == s, ]
m <- MASS::kde2d(x = data[, 1], y = data[, 2],
h = c(MASS::bandwidth.nrd(data[, 1]),
MASS::bandwidth.nrd(data[, 2])), n = 100,
lims = c(range(data[, 1]), range(data[, 2])))
z <- c(z, range(m$z))
}
z <- sort(z)
z.min <- z[1]
z.max <- z[length(z)]
xmin <- min(Data[, 1])
xmax <- max(Data[, 1])
ymin <- min(Data[, 2])
ymax <- max(Data[, 2])
legend <- ps(Data, z.min, z.max, title = NULL)
legend <- ggplot2::ggplotGrob(legend)
legend <- gtable::gtable_filter(legend, "box", trim = FALSE)
for (s in unique(Data[, split.by])) {
data <- Data[Data[, 3] == s, ]
plots[[s]] <- pm(data, z.min, z.max, title = s)
}
}
return((patchwork::wrap_plots(plots, ncol = ncol) | legend) +
patchwork::plot_layout(widths = c(3, 1)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.