#' Plot profiles of reference proteins
#'
#' This function plots the average profiles of any protein in the dataset,
#' the peptide profiles, and also the reference profile for each compartment
#'
#' @param protName Name of the protein to plot
#' @param profile Data frame of protein names and their relative abundance levels..
#' @param finalList spectrum-level abundance levels by protein and peptide; Ehis is NULL
#' if not available
#' @param numDataCols number of fractions per protein
#' @param n.compartments number of compartments (8 in Jadot data)
#' @param refLocationProfiles A matrix refLocationProfiles giving the abundance level profiles of the subcellular locations
#' n.compartments = 8 columns are subcellular locations, and numDataCols rows are the fraction names
#' @param assignPropsMat A matrix of assignment proportions
#' for proteins of interest, from the constrained proportional assignment algorithm,
#' and optionally upper and lower 95 percent confidence limits. Can be a single protein
#' @param transType type of transformation (for plot label)
#' @param yAxisLabel label for y-axis if present
#' @return plot of protein, peptide, and reference profiles
#' @export
#' @examples
#' data(protNSA_markerTLN1)
#' data(markerListJadot)
#' refLocationProfilesNSA <- locationProfileSetup(profile=protNSA_markerTLN1, markerList=markerListJadot, numDataCols=9)
#' protCPAfromNSA_test <- fitCPA(profile=protNSA_markerTLN1,
#' refLocationProfiles=refLocationProfilesNSA,
#' numDataCols=9)
#' protPlotfun(protName="TLN1", profile=protNSA_markerTLN1,
#' numDataCols=9, n.compartments=8,
#' refLocationProfiles=refLocationProfilesNSA,
#' assignPropsMat=protCPAfromNSA_test,
#' yAxisLabel="Normalized Specific Amount")
protPlotfun <- function(protName, profile, finalList=NULL,
numDataCols=9, n.compartments=8,
refLocationProfiles, assignPropsMat,
transType="", yAxisLabel="") {
# protPlot is the number of the protein to plot
# profileUse is a matrix with components:
# rownames: name of protein
# N, M, L1, ... : relative protein levels for fractions 1 through numDataCols; must sum to 1
#
# If standard errors are not available, se is false, and seMat is NULL
# If standard errors are available, se is true, and seMat is the list of proteinss and n.fraction standard errors
# If Nspectra and Npep (number of peptides) are included, Nspectra=TRUE
# refLocationProfiles: matrix with numDataCols rows and 8 columns.
# Column names are the subcellular fractions, Cytosol, ER, Golgi, etc.
# Row names are the names of the fractions: N, M, L1, L2, etc.
# Column and row names are required
# finalList contains all peptides AND spectra; option to be removed
oldpar <- par(no.readonly=TRUE)
on.exit(par(oldpar))
protsOK <- {rownames(profile) == rownames(assignPropsMat)}
index_profileT <- protIndex(protName, profile, exactMatch=TRUE) # index of protein in profile
index_assignT <- protIndex(protName, assignPropsMat, exactMatch=TRUE) # index of protein in assign
protName.i <- protName
# must be exact to avoid duplicate finds
# this can be a vector, matrix, or vector, so handling is complicated
#if (is.matrix(tempx)) temp <- tempx # leave it alone
# if temp is not a matrix, can then test for being NA with no error returned
if (!is.matrix(index_profileT)) {
if (is.na(index_profileT)[1]) {
cat(paste(protName, " not found \n")) # first element is NA
return(index_profileT)
}
}
if (nrow(index_profileT) > 1) {
cat(paste("more than one protein matches pattern \n"))
return(index_profileT)
}
index_profile <- as.numeric(index_profileT[1])
index_assign <- as.numeric(index_assignT[1])
meanProteinLevels <- profile[,seq_len(numDataCols)] # just the profiles
protNames <- rownames(profile)
protNameUnique <- make.unique(protNames)
rownames(meanProteinLevels) <- protNameUnique
subCellNames <- rownames(refLocationProfiles)
fractions.list <- colnames(refLocationProfiles)
# # # # # # # # # # # # # #
# Do the following if "finalList" (the full list of peptides and spectra)
# is available
# # # # # # # # # # # # # #
if (!is.null(finalList)) {
finalList.i <- finalList[toupper(finalList$prot) == protName.i, ]
if (nrow(finalList.i) > 0) fractions.i <- finalList.i[,2 + seq_len(numDataCols)]
if (nrow(finalList.i) == 0) stop("no corresponding spectra in finalList")
Nspectra <- nrow(finalList.i)
Npeptides <- length(unique(finalList.i$peptide))
finalList.use.i <- finalList.i
fractions.use.i <- finalList.use.i[,2+seq_len(numDataCols)]
outlierFlag.i <- finalList.use.i$outlierFlag
peptide.i <- as.character(finalList.use.i$peptide)
n.uniq.peptide.i <- length(unique(peptide.i))
uniq.peptides.list <- unique(peptide.i)
means.peptides.i <- matrix(NA, nrow=n.uniq.peptide.i, ncol=numDataCols)
outlierFlagVec.i <- rep(NA, n.uniq.peptide.i)
n.spectra.i <- rep(NA, n.uniq.peptide.i)
#browser()
# compute mean profiles for each peptide
for (jj in seq_len(n.uniq.peptide.i)) {
fractions.use.i.jj <- fractions.use.i[uniq.peptides.list[jj] == peptide.i,]
if (!is.null(outlierFlag.i)) outlierFlag.i.jj <- outlierFlag.i[uniq.peptides.list[jj] == peptide.i]
if (is.null(outlierFlag.i)) outlierFlag.i.jj <- nrow(fractions.use.i.jj)
means.peptides.i[jj,] <- apply(fractions.use.i.jj,2,mean)
outlierFlagVec.i[jj] <- mean(outlierFlag.i.jj)
n.spectra.i[jj] <- nrow(fractions.use.i.jj)
}
max.y <- max(means.peptides.i, na.rm=TRUE)
min.y <-0
n.assign <- nrow(assignPropsMat)
numDataCols.i <- nrow(fractions.i)
}
# just use the index number, the first element
yy <- as.numeric(meanProteinLevels[index_profile[1],])
if (anyNA(yy)) {
cat(paste(protName, " contains missing values \n profile not plotted\n")) # yy contains NA's
return(protName.i)
}
xvals <- seq_len(numDataCols)
#max.y <- max(channelsAll, na.rm=TRUE)
#max.y <- max(meanProteinLevels, na.rm=TRUE)
min.y <-0
#if (dataType == "raw") min.y <- 0
loc.list <- subCellNames
#windows(width=10, height=8)
#par(mfrow=c(3,3))
# # # # # # # # # # # # # # #
# Set up layout for 8 compartments (and a legend)
# This will have to be adjusted if there
# are more than 8 compartments
# # # # # # # # # # # # # # #
layout(rbind(c(14,1,1,1,15),
c(14,2,3,4,15),
c(14,5,5,5,15),
c(14,6,7,8,15),
c(14,9,9,9,15),
c(14,10,11,12,15),
c(14,13,13,13,15)),
#c(16,12,13,14,15,17),
#c(16,18,18,18,18,17)),
heights=c(0.75,2,0.25,2,0.25,2,0.25),
widths=c(0.4,2,2,2,0.4),respect=FALSE)
#layout.show(15)
x <- c(0,5)
y <- c(0,0.5)
par(mar=c(0,0,0,0))
plot(y ~ x,type="n",axes=FALSE,cex=1)
text(x=2.5,y=0.3,paste(protName.i), cex=2)
NpeptidesPlot <- profile$Npep[index_profile[1]]
NspectraPlot <- profile$Nspectra[index_profile[1]]
if (!is.null(NpeptidesPlot) & !is.null(NspectraPlot)) {
NpeptidesPlotText <- " peptides and "
#browser()
if (NpeptidesPlot == 1) NpeptidesPlotText <- " peptide and "
NspectraPlotText <- " spectra"
if (NspectraPlot == 1) NspectraPlotText <- " spectrum"
text(x=2.5,y=0.1, paste(NpeptidesPlot, NpeptidesPlotText,
NspectraPlot , NspectraPlotText), cex=2)
}
if (!is.null(NpeptidesPlot) & is.null(NspectraPlot)) {
NpeptidesPlotText <- " peptides "
if (NpeptidesPlot == 1) NpeptidesPlotText <- " peptide "
text(x=2.5,y=0.1, paste(NpeptidesPlot, NpeptidesPlotText), cex=2)
}
min.y <- 0
par(mar=c(2,4,2,1.5))
# The plots are in alphabetical order
# re-arrange the plots so that they are in this order:
# Mito (7) Lyso (4) Perox (5)
# ER (2) Golgi (1) PM (8)
# Cyto (3 ) Nuc (6)
#
#loc.ord <- c(7, 4, 5, 2, 1, 8, 3, 6)
loc.ord <- c(5, 4, 7, 2, 3, 8, 1, 6)
for (i in loc.ord) { # do all the subcellular locations
# i=1
if (TRUE) {
#if ({loc.ord[i] == 4} | {loc.ord[i] == 7}) {
if ({i == 2} | {i == 1}) {
x <- c(0,5)
y <- c(0,0.5)
par(mar=c(0,1,0,0))
plot(y ~ x,type="n",axes=FALSE,cex=1, ylab="")
par(mar=c(2,3.5,2,1.5))
}
}
assign.i <- names(meanProteinLevels)[i] # channel i name
#assignLong.i <- names(markerLoc)[i]
assignLong.i <- subCellNames[i]
#channels.i <- meanProteinLevels[{names(as.data.frame(refLocationProfiles)) == as.character(assign.i)},]
##?? means.peptides.i <- meanProteinLevels[{names(as.data.frame(refLocationProfiles)) == as.character(assign.i)},]
#mean.i <- markerLoc[,i]
mean.i <- as.numeric(refLocationProfiles[i,])
if (!is.null(finalList)) max.y <- max(c(max(means.peptides.i), max(refLocationProfiles[i,])))
if (is.null(finalList)) max.y <- max(c(mean.i,yy))
par(mar=c(2,4.1,2,1.5))
plot(mean.i ~ xvals, axes=FALSE, type="l",
ylim=c(min.y, max.y), ylab=transType)
axis(1,at=xvals,labels=fractions.list, las=2)
if (FALSE) {
axis(side=1,at=xvals,labels=FALSE, cex.axis=0.6)
text(x = seq_len(length(fractions.list)),
## Move labels to just below bottom of chart.
y = par("usr")[3] - max(mean.i)/12,
## Use names from the data list.
labels = fractions.list,
## Change the clipping region.
xpd = NA,
## Rotate the labels by 35 degrees.
srt = 45,
## Adjust the labels to almost 100% right-justified.
adj = 0.965,
## label size.
cex = 0.8)
}
axis(2)
if (!is.null(finalList)) {
for (j in seq_len(n.uniq.peptide.i)) {
lwdplot <- 1
colplot <- "cyan"
if (n.spectra.i[j] > 1) {
lwdplot <- 2
colplot <- "deepskyblue"
}
if (n.spectra.i[j] > 2) {
lwdplot <- 3
colplot <- "dodgerblue3"
}
if (n.spectra.i[j] > 5) {
lwdplot <- 4
colplot <- "blue"
}
lines(as.numeric(means.peptides.i[j,]) ~ xvals, cex=0.5, lwd=lwdplot, col=colplot)
if (outlierFlagVec.i[j] == 1) lines(as.numeric(means.peptides.i[j,]) ~ xvals,
cex=0.5, lwd=1, col="orange")
}
}
lines(yy ~ xvals, col="red", lwd=2)
lines(mean.i ~ xvals, lwd=4, col="black", lty=1) # thick black solid line
lines(mean.i ~ xvals, lwd=2, col="yellow", lty=2) # thinner yellow dashed line
title(paste(assignLong.i, "\n p = ", round(assignPropsMat[index_assign[1],i], digits=2 )))
}
x <- c(0,5)
y <- c(0,0.5)
par(mar=c(0,0,0,0))
plot(y ~ x, type="n", axes=FALSE)
if (!is.null(finalList)) {
legend(x=1, y=0.4, legend=c("Reference profile", "Average profile", "1 spectrum", "2 spectra", "3-5 spectra", "6+ spectra"),
col=c("black", "red", "cyan", "deepskyblue", "dodgerblue3", "blue"), lwd=c(5,2,1,2,3,4), lty=c(1,1,1,1,1,1))
legend(x=1, y=0.4, legend=c("Reference profile", "Average profile", "1 spectrum", "2 spectra", "3-5 spectra", "6+ spectra"),
col=c("yellow", "red", "cyan", "deepskyblue", "dodgerblue3", "blue"), lwd=c(2,2,1,2,3,4), lty=c(2,1,1,1,1,1))
}
if (is.null(finalList)) {
legend(x=1, y=0.4, legend=c("Reference profile", "Average profile"),
col=c("black", "red"), lwd=c(5,2), lty=c(1,1))
legend(x=1, y=0.4, legend=c("Reference profile", "Average profile"),
col=c("yellow", "red"), lwd=c(2,2), lty=c(2,1))
}
x <- c(0,5)
y <- c(0,0.5)
plot(y ~ x, type="n", axes=FALSE)
par(mar=c(0,0,0,0))
plot(y ~ x, type="n", axes=FALSE)
text(x=2.5, y=0.25, labels=yAxisLabel, srt=90, cex=2 )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.