R/runGSVAmods.R

Defines functions runGSVAmods

Documented in runGSVAmods

#' Perform ssGSVA on gene sets and get set signature hits
#'
#' Adds hyperenrichment analysis results to the output of runDGEmods().
#' @param K2res An object of class K2. The output of runDGEmods().
#' @param ssGSEAalg A character string, specifying which algorithm to use for
#' running the gsva() function from the GSVA package. Options are 'gsva',
#' 'ssgsea', 'zscore', and 'plage'. 'gsva' by default.
#' @param ssGSEAcores Number of cores to use for running gsva() from the GSVA
#' package. Default is 1.
#' @param ... Additional arguments passed onto GSVA::gsva()
#' @return An object of class K2.
#' @references
#'  \insertRef{reed_2020}{K2Taxonomer}
#'  \insertRef{gsva}{K2Taxonomer}
#' @keywords clustering
#' @export
#' @import GSVA
#' @import Biobase
#' @examples
#' ## Read in ExpressionSet object
#' library(Biobase)
#' data(sample.ExpressionSet)
#'
#' ## Pre-process and create K2 object
#' K2res <- K2preproc(sample.ExpressionSet)
#'
#' ## Run K2 Taxonomer algorithm
#' K2res <- K2tax(K2res,
#'             stabThresh=0.5)
#'
#' ## Run differential analysis on each partition
#' K2res <- runDGEmods(K2res)
#'
#' ## Create dummy set of gene sets
#' DGEtable <- getDGETable(K2res)
#' genes <- unique(DGEtable$gene)
#' genesetsMadeUp <- list(
#'     GS1=genes[1:50],
#'     GS2=genes[51:100],
#'     GS3=genes[101:150])
#'
#' ## Run gene set hyperenrichment
#' K2res <- runGSEmods(K2res,
#'                 genesets=genesetsMadeUp,
#'                 qthresh=0.1)
#'
#' ## Run GSVA on genesets
#' K2res <- runGSVAmods(K2res,
#'                 ssGSEAalg='gsva',
#'                 ssGSEAcores=1,
#'                 verbose=FALSE)
#'

runGSVAmods <- function(K2res, ssGSEAalg=NULL, ssGSEAcores=NULL,
    ...) {

    ## Run checks
    .isK2(K2res)

    ## Change meta data if new value is specific
    K2meta(K2res)$ssGSEAalg <- .checkK2(K2res, "ssGSEAalg", ssGSEAalg)
    K2meta(K2res)$ssGSEAcores <- .checkK2(K2res, "ssGSEAcores",
        ssGSEAcores)

    ## Check K2 object
    k2Check <- .checkK2(K2res)

    ## Run GSVA
    K2gSet(K2res) <- gsva(K2eSet(K2res), method=K2meta(K2res)$ssGSEAalg,
        gset.idx.list=K2genesets(K2res), parallel.sz=K2meta(K2res)$ssGSEAcores,
        ...)

    return(K2res)
}
montilab/K2Taxonomer documentation built on Nov. 8, 2024, 2:36 a.m.