#' @title Calculated univariate analysis and creates a forest plot
#'
#' @description The function creates a forest plot for a given
#' number of variables, expect a srv object and a data.frame containing
#' the selected variables as columns. Univariate Cox PH models
#' are fitted. A subject vector can be specified to allow for the
#' analysis of multiple observations per patient (e.g. paired samples),
#' by using marginal model [cluster(subject)]. Errors might occur if the graphic
#' devices dimension is too small (foresplot() fails).
#'
#' @param srv Survival object as created by survival::Surv() function,
#' each observation is linked to one row of the data parameter
#' @param data data.frame containing all variables which will be analyzed.
#' The class of each column determined the type of analysis: numeric cols
#' will be treated as continous variable, factor and character as factors.
#' @param subject vector identifying independent subjects
#' @param title Plot title
#' @param col Color vector as expected by the forestplot() function
#' @param invalCut Cutoff to set HR, CI and p-values to empty values
#' if HR exceeds the provided cutoff (e.g. if models do not converge)
#' @param removeInval Retain as invalid identified levels (invalCut)
#' @param singleLine variable name and measruemnet in one line
#'
#' @import forestplot
#' @import survival
#' @import grid
#'
#' @export
plotForestParam <- function(srv, data, subject=NULL, title="", col=c("royalblue", "darkblue", "royalblue"),
invalCut=100, removeInval=F, dist="weibull", singleLine=F, plotNCol=T, boldPCut=0.05) {
uv <- list()
for (i in 1:length(data[1,])) {
print(colnames(data)[i])
# Add variable
# factors
if (class(data[,i]) %in% c("factor", "character")) {
uv [[length(uv)+1]] <- data.frame(name1=colnames(data)[i],
name2=NA,
HR=NA,
LOW=NA,
UP=NA,
PVAL=NA,
N=NA)
if (is.null(subject)) {
w <- which(!is.na(data[,i]) & !is.na(srv))
fit <- survreg(srv[w]~factor(data[w,i]), dist=dist)
tbl <- data.frame(int(fit, dist=dist),
N=summary(fit)$n,
summary(fit)$table[-c(1,length(summary(fit)$table[,1])),,drop=F])
} else {
if (any(as.numeric(srv)[1:length(srv)] ==0)) {
warning("Found 0 time in survival object. Removing!")
}
w <- which(!is.na(data[,i]) & !is.na(srv) & as.numeric(srv)[1:length(srv)] > 0)
fit <- survreg(srv[w]~factor(data[w,i])+cluster(subject[w]), dist=dist)
rmI <- c(1, length(summary(fit)$table[,1]))
tbl <- cbind(int(fit),
N=summary(fit)$n,
summary(fit)$table[-rmI,-3,drop=F])
}
rownames(tbl) <- substr(rownames(tbl), 19, nchar(rownames(tbl)))
for (j in 1:length(tbl[,1])) {
uv [[length(uv)+1]] <- data.frame(name1=NA,
name2=rownames(tbl)[j],
HR=tbl[j,2],
LOW=tbl[j, 1],
UP=tbl[j, 3],
PVAL=tbl[j, 8],
N=tbl[j,4])
}
} else if (class(data[,i]) %in% c("numeric", "integer")) {
uv [[length(uv)+1]] <- data.frame(name1=colnames(data)[i],
name2=NA,
HR=NA,
LOW=NA,
UP=NA,
PVAL=NA,
N=NA)
if (is.null(subject)) {
w <- which(!is.na(data[,i]) & !is.na(srv))
fit <- survreg(srv[w]~data[w,i], dist=dist)
tbl <- data.frame(int(fit, dist=dist),
N=summary(fit)$n,
summary(fit)$table[-c(1,length(summary(fit)$table[,1])),,drop=F])
} else {
if (any(as.numeric(srv)[1:length(srv)] ==0)) {
warning("Found 0 time in survival object. Removing!")
}
w <- which(!is.na(data[,i]) & !is.na(srv) & as.numeric(srv)[1:length(srv)] > 0)
fit <- survreg(srv[w]~data[w,i]+cluster(subject[w]), dist=dist)
rmI <- c(1, length(summary(fit)$table[,1]))
######
tbl <- cbind(int(fit),
N=summary(fit)$n,
summary(fit)$table[-rmI,-3,drop=F])
}
j<-1
uv [[length(uv)+1]] <- data.frame(name1=NA,
name2=NA,
HR=tbl[j,2],
LOW=tbl[j, 1],
UP=tbl[j, 3],
PVAL=tbl[j, 8],
N=tbl[j,4])
} else {
warning(paste("Could not process ", colnames(data)[i]))
}
}
uv <- do.call(rbind, uv)
## set invaldi data to NA
if (F) {
w <- which(uv[,3] > invalCut)
if (length(w) >0) {
uv[w,c(3:6)] <- NA
if (removeInval) {
uv <- uv[-w,,drop=F]
}
}
}
if (dist =="weibull") {
dN <- "Hazard Ratio"
} else if (dist == "loglog") {
dN <- "Odds Ratio"
}
tabletext<-cbind(c("", as.character(uv[,1])),
c("", as.character(uv[,2])),
c(dN, round(uv[,3],2)),
c("95% CI", ifelse(uv[,4] == "", "",
paste(format(round(uv[,4],2), nsmall=2), "-", format(round(uv[,5],2), nsmall=2), sep=""))),
c("p-value", ifelse(round(uv[,6],3) == 0, "<0.001",round(uv[,6],3) )),
c("n", paste(uv[,7], sep=""))
)
## n/nevent
tabletext[2:(length(tabletext[,1])-1),6] <- tabletext[3:length(tabletext[,1]),6]
for (i in 1:length(tabletext[,1])) {
tabletext[i,1] <- paste(tabletext[i,1], tabletext[i,2], collapse=" ")
tabletext[i,1] <- gsub("NA", "", tabletext[i,1])
tabletext[i,6] <- gsub("NA/NA", "", tabletext[i,6])
if (!is.na(tabletext[i,5]) && i > 1) { tabletext[i,6] <- "" }
}
tabletext <- tabletext[,-2]
tabletext[,3] <- gsub("NA-NA", "", tabletext[,3])
#### same height
if (singleLine) {
tbt <- list()
tbt[[length(tbt)+1]] <- tabletext[1,,drop=F]
for (i in 3:(length(tabletext[,1]))) {
ln <- tabletext[(i-1),,drop=F]
ln[,2:4] <- tabletext[i,2:4]
tbt[[length(tbt)+1]] <- ln
i <- i+1
}
tbt <- do.call(rbind, tbt)
sel <- which(!is.na(tbt[,2]))
#### adjust
tabletext <- tbt[sel,,drop=F]
uv <-uv[seq(from=2, to=length(uv[,1]), by=2),]
}
## remove column with n
if (!plotNCol) {
tabletext <- tabletext[,1:(length(tabletext[1,])-1)]
}
### boldprint
bp <- list()
for (i in 1:length(tabletext[,1])) {
bp[[i]] <-list()
for (j in 1:length(tabletext[1,])) {
if (j == 4) {
if (!is.na(as.numeric(tabletext[i,j])) && (as.numeric(tabletext[i,j]) < boldPCut)) {
bp[[i]][[j]] <- gpar(fontface="bold")
} else if (!is.na(tabletext[i,j]) && tabletext[i,j] == "<0.001") {
bp[[i]][[j]] <- gpar(fontface="bold")
} else {
bp[[i]][[j]] <- gpar(fontface="plain")
}
} else {
bp[[i]][[j]] <- gpar(fontface="plain")
#bp[[i]][[j]] <- gpar(fontface="bold")
}
}
}
fp <- forestplot(tabletext,
txt_gp=fpTxtGp(label=bp),
mean = c(NA, as.numeric(as.character(uv[,3]))),
lower = c(NA, as.numeric(as.character(uv[,4]))),
upper = c(NA, as.numeric(as.character(uv[,5]))),
new_page = TRUE,
title=title,
is.summary=c(rep(FALSE,length(tabletext[,1]))),
clip=c(0.1,3.2),
xlog=F,
col=fpColors(box=col[1],line=col[2], summary=col[3]),
#align=1,
zero=1)
print(fp)
return(uv)
}
#' @title Intervals for parametric dist
#' @import SurvRegCensCov
#' @export
int <- function(fit, dist="loglog", z=1.96) {
ret <- NULL
if (dist == "loglog") {
alpha1 <- summary(fit)$table[,1]
lwr <- alpha1 - summary(fit)$table[,2]*z
upr <- alpha1 + summary(fit)$table[,2]*z
alpha1 <- fit$coefficient[]
p <- 1/fit$scale
v1 <- exp(-alpha1*p)
v2 <- exp(-lwr*p)
v3 <- exp(-upr*p)
len <- length(v1)
len <- ifelse(length(v2) < len, length(v2), len)
len <- ifelse(length(v3) < len, length(v3), len)
ret <- data.frame(v1[1:len], v2[1:len],v3[1:len])
#o <- order(ret[1,])
o <- order(unlist(ret[2,])) #### ACHTUNG!!
ret <- ret[,o]
colnames(ret) <- c("LOW","EST","UP")
ret <- ret[-which(grepl("Intercept", rownames(ret))),,drop=F]
} else if (dist == "weibull") {
ret <- ConvertWeibull(fit)$HR
o <- order(ret[1,]) #### FIXME?
#o <- order(unlist(ret[2,])) #### ACHTUNG!!
ret <- ret[,o,drop=F]
}
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.