#' Run FSig-SNV cds p-value calculation
#'
#' @param inputDir Where is annotated funseq2 result
#' @param tumorType study name
#' @param mutationType User provided mutated gene list
#' @param reSampleIter User provided re-sapling iteration numbers
#' @param seedNum User provided random number seed, default is 42
#' @param debugMode TRUE or FALSE
#'
#' @return results data frame
#'
#' @examples
#' #date<-getRunDates(latest=TRUE)
#' cancerType<-"KIRC"
#' selectedSampleId<-NA
#' #worDir<-getwd()
#' mutSig2CVthreshold<-0.1
#' rareMutationUpperLimit<-0.3
#' rareMutationLowerLimit<-0.1
#' rareMutationFreq<-0.02
#'
#' #runNetBox2(dataDir,cancerType,
#' # mutationList,ampGeneList,delGeneList,epiSilencedList,
#' # mutationFreq,ampGeneFreq,delGeneFreq,epiSilencedFreq,
#' # pathwayCommonsDb,directed,
#' # linkerPValThreshold,communityDetectionMethod,
#' # keepIsolatedNodes,verbose=TRUE)
#'
#' @concept fisgsnv
#' @export
#' @importFrom plyr rbind.fill
#' @importFrom stats p.adjust
#' @importFrom utils write.table
getCDSpvalue<-function(inputDir,tumorType,mutationType,reSampleIter=1000,seedNum=42,debugMode=FALSE){
#library(data.table)
#library(plyr)
######
#inputDir<-"~/work/Ekta_lab/Priyanka_project/fsigsnv_results"
#tumorType<-"Prostate"
workDir<-file.path(inputDir,tumorType)
#mutationType<-"CDS"
#seedNum<-42
#reSampleNum<-1000
reSampleNum<-reSampleIter
set.seed(seedNum)
if( !file.exists(paste(workDir,sep="/")) ){
dir.create(paste(workDir,sep=""),recursive=TRUE)
}
########
filePath<-file.path(workDir,"input")
fileName<-paste("reducedFunseqOutputCDS_",tumorType,".Rd",sep="")
fileName<-file.path(filePath,fileName)
load(fileName)
#####
cat(sprintf("Processing %s - %s\n",tumorType,mutationType))
gg<-strsplit(as.character(reducedFunseqOutputCDS$CDSS),":",fixed=TRUE)
cc<-data.frame(do.call("rbind",gg),stringsAsFactors=FALSE)
reducedFunseqOutputCDS$score<-as.numeric(cc[,1])
####
mergeDF<-reducedFunseqOutputCDS
#fileName<-paste(tumorType,"_",mutationType,"_merge_variant_details.txt",sep="")
#fileName<-file.path(workDir,fileName)
#write.table(mergeDF,fileName,sep="\t",quote=FALSE,row.names = FALSE,col.names = TRUE)
groupType<-c("allSamples")
groupDF<-{}
groupDF[[groupType[1]]]<-mergeDF
#tmpDF<-reducedFunseqOutputNCDS
for(i in 1:length(groupType)){
tmpDF<-groupDF[[groupType[i]]]
groupName<-groupType[i]
cat(sprintf("Processing %s\n",groupName))
#tmpDF<-reducedFunseqOutputCDS
posIndex<-paste(tmpDF$chr,tmpDF$posStart,tmpDF$posEnd,sep="@")
geneDF<-data.frame(tmpDF$sampleID,posIndex,tmpDF$GENE,tmpDF$ref,tmpDF$alt,tmpDF$score,stringsAsFactors = FALSE)
colnames(geneDF)<-c("sampleID","posIndex","geneSymbol","ref","alt","score")
geneNameVector<-unique(geneDF$geneSymbol)
geneDF<-split(geneDF,geneDF$geneSymbol)
geneDFpatient<-{}
for(geneName in geneNameVector){
#tmpDat<-geneDF[[geneName]][!(duplicated(geneDF[[geneName]]$posIndex)),]
tmpDat<-geneDF[[geneName]]
npat<-length(unique(tmpDat$sampleID))
geneDFpatient[[geneName]]<-npat
}
geneDFunique<-{}
compositeScoreVector<-{}
uniqueVariantPos<-{}
for(geneName in geneNameVector){
geneDFunique[[geneName]]<-geneDF[[geneName]][!(duplicated(geneDF[[geneName]]$posIndex)),]
recurrenceVector<-table(geneDF[[geneName]]$posIndex)
geneDFunique[[geneName]]$occurence<-recurrenceVector[as.character(geneDFunique[[geneName]]$posIndex)]
geneDFunique[[geneName]]$compositeScore<-geneDFunique[[geneName]]$score*geneDFunique[[geneName]]$occurence
compositeScoreVector[[geneName]]<-sum(geneDFunique[[geneName]]$compositeScore)
uniqueVariantPos[[geneName]]<-nrow(geneDFunique[[geneName]])
}
geneDF<-rbind.fill(geneDF)
geneDFunique<-rbind.fill(geneDFunique)
compositeScoreDF<-data.frame(uniqueVariantPos,compositeScoreVector,stringsAsFactors = FALSE)
rownames(compositeScoreDF)<-names(compositeScoreVector)
colnames(compositeScoreDF)<-c("uniqueVariantPos","compositeScore")
######
cdsMutationFreq<-sort(table(compositeScoreDF$uniqueVariantPos),decreasing=TRUE)
cdsMutationCheckList<-rownames(compositeScoreDF)
######
#set.seed(42)
#mutationType<-"CDS"
#reSampleNum<-1000000
compositeFunseqScore<-{}
compositeFunseqScoreResample<-{}
numOfAlterationPos<-{}
numOfAlteration<-{}
numOfPatient<-{}
numOfAboveCFscore<-{}
pValue<-{}
outputDf<-{}
reSampleDistributionSize<-sort(as.numeric(names(cdsMutationFreq)),decreasing = TRUE)
compositeFunseqScoreResample<-matrix(rep(0,length(reSampleDistributionSize)*reSampleNum),nrow=length(reSampleDistributionSize),ncol=reSampleNum)
cat(sprintf("Generate reSampling distritubtion\n"))
for(i in 1:length(reSampleDistributionSize)){
#i<-21
cat(sprintf("%s/%s reSampling distribution\n",i,length(reSampleDistributionSize)))
if(reSampleDistributionSize[i]==1 && nrow(geneDFunique) < reSampleNum){
tmpVector<-c(geneDFunique$compositeScore,rep(0,(reSampleNum-nrow(geneDFunique))))
compositeFunseqScoreResample[i,]<-tmpVector
}else{
for(j in 1:reSampleNum){
#i<-1
index<-sample(1:nrow(geneDFunique),size=reSampleDistributionSize[i],replace=FALSE)
compositeFunseqScoreResample[i,j]<-sum(geneDFunique[index,]$compositeScore)
#compositeFunseqScoreResample[1]
}
}
}
#####
#tumorType<-"PRAD"
#dim(compositeFunseqScoreResample)
outputDir<-file.path(workDir,"result",mutationType)
if( !file.exists(outputDir) ){
dir.create(outputDir,recursive=TRUE)
}
fileName<-paste(tumorType,"_",mutationType,"_",groupName,"_compositeFunseqScoreResample_iter_",reSampleNum,".Rd",sep="")
fileName<-file.path(outputDir,fileName)
save(compositeFunseqScoreResample,file=fileName)
fileName<-paste(tumorType,"_",mutationType,"_",groupName,"_cdsMutationFreqTable.txt",sep="")
fileName<-file.path(outputDir,fileName)
write.table(geneDFunique,file=fileName,sep="\t",quote=FALSE,row.names =FALSE,col.names = TRUE)
reSampleSize<-{}
numOfgeneCheck<-length(unique(geneDFunique$geneSymbol))
cat(sprintf("Start calculating p-value\n"))
for(k in 1:numOfgeneCheck){
#for(k in 1:10){
cat(sprintf("%s/%s\t",k,numOfgeneCheck))
cat(sprintf("type:%s\tgene:%s\n",mutationType,cdsMutationCheckList[k]))
numOfAlterationPos[k]<-compositeScoreDF[rownames(compositeScoreDF) %in% cdsMutationCheckList[k],]$uniqueVariantPos
numOfAlteration[k]<-sum(geneDFunique[geneDFunique$geneSymbol %in% cdsMutationCheckList[k],]$occurence)
numOfPatient[k]<-geneDFpatient[[cdsMutationCheckList[k]]]
compositeFunseqScore[k]<-compositeScoreDF[rownames(compositeScoreDF) %in% cdsMutationCheckList[k],]$compositeScore
numOfAboveCFscore[k]<-sum(compositeFunseqScoreResample[which(reSampleDistributionSize==numOfAlterationPos[k]),]>=compositeFunseqScore[k])
if(numOfAlterationPos[k]==1 && nrow(geneDFunique) < reSampleNum){
if(compositeFunseqScore[k]==0){
pValue[k]<-1
numOfAboveCFscore[k]<-nrow(geneDFunique)
}else{
pValue[k]<-(numOfAboveCFscore[k]+1)/(nrow(geneDFunique)+1)
}
reSampleSize[k]<-nrow(geneDFunique)
}else{
pValue[k]<-(numOfAboveCFscore[k]+1)/(reSampleNum+1)
reSampleSize[k]<-reSampleNum
}
}
cat(sprintf("Finish calculating p-value\n"))
#outputDf<-data.frame(cdsMutationCheckList[1:10],numOfAlteration,compositeFunseqScore,numOfAboveCFscore,rep(reSampleNum,length(cdsMutationCheckList[1:10])),pValue)
outputDf<-data.frame(cdsMutationCheckList,numOfAlterationPos,numOfAlteration,numOfPatient,compositeFunseqScore,numOfAboveCFscore,reSampleSize,pValue)
outputDf<-outputDf[order(outputDf$pValue),]
outputDf$qValue<-p.adjust(outputDf$pValue,method = "BH")
colnames(outputDf)<-c("geneSymbol","numOfAlterationPos","numOfAlteration","numOfPatient","fsigScore","numOfAbovefsigScore","reSampleNum","pValue","qValue")
fileName<-paste(tumorType,"_outputDf_",mutationType,"_",groupName,"_",reSampleNum,".txt",sep="")
fileName<-file.path(outputDir,fileName)
write.table(outputDf,file=fileName,sep="\t",quote=FALSE,row.names =FALSE,col.names = TRUE)
#removeIdx<-outputDf$numOfAlteration<3
#bb<-outputDf[!removeIdx,]
#bb$qValue<-p.adjust(bb$pValue,method="BH")
#bb<-bb[order(bb$pValue),]
}
return(outputDf)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.