inst/extdata/phyloseq/caseStudy2-NutrientThreshold.R

## ---- echo=FALSE--------------------------------------------------------------
knitr::opts_chunk$set(
  cache = FALSE,
  fig.width = 9,
  message = FALSE,
  warning = FALSE)


## ----load2, eval=TRUE---------------------------------------------------------
library(ggplot2)
library(vegan)
library(reshape2)
library(umap)
library(miaSim)
library(philentropy)
library(ape)
library(cluster)


## -----------------------------------------------------------------------------
set.seed(42)


## -----------------------------------------------------------------------------
n_species <- 5
n_resources <- 5
E <- randomE(n_species, n_resources, mean_consumption = 1, mean_production = 3)
growth_rates <- runif(n_species)
monod_constant <- matrix(rbeta(n_species*n_resources, 10,10),nrow=n_species, ncol=n_resources)
t_store <- 50
n.instances <- 1 # no stochastic process: no need to repeat



## -----------------------------------------------------------------------------
gradient.df.generator <- function(n_row, n_col, density_row, max_gradient, error_interval){
    list_initial <- list()
    dissimilarity.gradient <- seq(from = 0, to = max_gradient, length.out = n_row)
    for (i in seq_len(n_row)){
        print(i)
        if (i == 1){
            row_temp <- rbeta(n_col, 1, 1/n_col)
            col_to_remove <- sample(x = seq_len(n_col), size = n_col-n_col*density_row)
            row_temp[col_to_remove] <- 0
            list_initial[[i]] <- row_temp
        } else {
            while (length(list_initial) < i) {
                row_temp <- rbeta(n_col, 1, 1/n_col)
                col_to_remove <- sample(x = seq_len(n_col), size = n_col-n_col*density_row)
                row_temp[col_to_remove] <- 0
                diff_temp <- abs(vegdist(rbind(list_initial[[1]], row_temp), method = "bray") - dissimilarity.gradient[i])
                if (diff_temp < error_interval) {
                    list_initial[[i]] <- row_temp
                }
            }
        }
    }
    dataframe_to_return <- as.data.frame(t(matrix(unlist(list_initial), ncol = n_row)))
    return(dataframe_to_return)
}


## -----------------------------------------------------------------------------
n.community <- 5 # you can also try 20 or even 50.
density.community <- 0.8
set.seed(42)
community.initial.df <- gradient.df.generator(n_row = n.community, n_col = n_species, density_row = density.community, max_gradient = 0.7, error_interval = 0.1)
dist.community.initial.df <- vegdist(community.initial.df, method = "bray")


## -----------------------------------------------------------------------------
makePlot <- function(out_matrix, title = "abundance of species by time", obj = "species", y.label = "x.t"){
    df <- as.data.frame(out_matrix)
    dft <-  melt(df, id="time")
    names(dft)[2] = obj
    names(dft)[3] = y.label
    lgd = ncol(df)<= 20
    ggplot(dft, aes_string(names(dft)[1], names(dft)[3], col = names(dft)[2])) +
        geom_line(show.legend = lgd, lwd=0.5) +
        ggtitle(title) +
        theme_linedraw() +
        theme(plot.title = element_text(hjust = 0.5, size = 14))
}
makePlotRes <- function(out_matrix, title = "quantity of compounds by time"){
    df <- as.data.frame(out_matrix)
    dft <-  melt(df, id="time")
    names(dft)[2] = "resources"
    names(dft)[3] = "S.t"
    lgd = ncol(df)<= 20
    ggplot(dft, aes(time, S.t, col = resources)) +
        geom_line(show.legend = lgd, lwd=0.5) +
        ggtitle(title) +
        theme_linedraw() +
        theme(plot.title = element_text(hjust = 0.5, size = 14))
}
makeHeatmap <-function(matrix.A,
                       title = "Consumption/production matrix",
                       y.label = 'resources',
                       x.label = 'species',
                       midpoint_color = NULL,
                       lowColor = "red",
                       midColor = "white",
                       highColor = "blue"){
    df <- melt(t(matrix.A))
    if (is.null(midpoint_color)) {
        midpoint_color <- 0
    }
    names(df)<- c("x", "y", "strength")
    df$y <- factor(df$y, levels=rev(unique(sort(df$y))))
    fig <- ggplot(df, aes(x,y,fill=strength)) + geom_tile() + coord_equal() +
        theme(axis.title = element_blank()) +
        scale_fill_gradient2('strength', low = lowColor, mid = midColor, high = highColor, midpoint = midpoint_color)+
        theme_void() + ggtitle(title)

    if (ncol(matrix.A)<=10 & nrow(matrix.A)<=10){
        fig <- fig + geom_text(aes(label = round(strength, 2)))
    } else if (ncol(matrix.A)<=15 & nrow(matrix.A)<=15){
        fig <- fig + geom_text(aes(label = round(strength, 1)))
    } else {
        fig <- fig
    }

    fig <- fig + labs(x = x.label, y = y.label)+
        theme_linedraw() +
        theme(plot.title = element_text(hjust = 0.5, size = 14), axis.text.x = element_text(
            angle = 90))

    if (nrow(matrix.A) >= 20){
        # too many species
        fig <- fig + theme(
            axis.title.y=element_blank(),
            axis.text.y=element_blank(),
            axis.ticks.y=element_blank(),
        )
    }
    if (ncol(matrix.A) >= 20){
        # too many resources
        fig <- fig + theme(
            axis.title.x=element_blank(),
            axis.text.x=element_blank(),
            axis.ticks.x=element_blank()
        )
    }
    fig
}
makeUMAP <- function(matrix, n_neighbors=10, min_dist=0.1, gradient=NULL, gradient_title = 'gradient', group=NULL, group2=NULL){
    custom.config = umap.defaults
    custom.config$n_neighbors = n_neighbors
    custom.config$min_dist = min_dist

    df <- as.data.frame(umap(matrix,config = custom.config)$layout)
    df$gradient <- gradient

    if (is.null(gradient)){
        df$gradient <- 1

    }
    colnames(df) = c('UMAP_2', 'UMAP_1', gradient_title)
    if (is.null(group)){
        ggplot(df, aes_string('UMAP_2', 'UMAP_1', color=gradient_title)) +
            geom_point() +
            scale_color_gradient(low="blue", high="red")
    } else {
        if (is.null(group2)){
            ggplot(df, aes_string('UMAP_2', 'UMAP_1', color=gradient_title)) +
                geom_point(aes(color = group)) + theme_bw()
        } else {
            ggplot(df, aes_string('UMAP_2', 'UMAP_1', color=gradient_title)) +
                geom_point(aes(color = group, shape = group2)) + theme_bw()
        }
    }
}

makeHeatmap(as.matrix(dist.community.initial.df),
            title = "dissimilarity matrix",
            x.label = "community.1",
            y.label = "community.2")
makeUMAP(matrix = community.initial.df,
         n_neighbors = 5,
         group = factor(seq_len(n.community)),
         gradient_title = "community")



## -----------------------------------------------------------------------------
crm_params <- list(
    n_species = n_species,
    n_resources = n_resources,
    x0 = NULL,
    E = E,
    resources = rep(1,n_resources),
    monod_constant = monod_constant,
    migration_p = 0,
    stochastic = FALSE,
    t_start = 0,
    t_end = 50,
    t_step = 1,
    t_store = t_store,
    growth_rates = growth_rates,
    norm=FALSE)


## -----------------------------------------------------------------------------
resourceConcentration <- 10^seq(0,4,1) # 1 to 10000
n.medium <- 5
density.medium <- 0.8
set.seed(42)
resource.initial.df <- gradient.df.generator(n_row = n.medium, n_col = n_resources, density_row = density.medium, max_gradient = 0.7, error_interval = 0.1)


## ----simulateConsumerResource, eval=FALSE-------------------------------------
## crmExample <- simulateConsumerResource(
##     n_species = n_species,
##     n_resources = n_resources,
##     E = E,
##     x0 = as.numeric(community.initial.df[1,]),
##     resources = as.numeric(resourceConcentration[3]*resource.initial.df[1,]),
##     growth_rates = growth_rates,
##     monod_constant = monod_constant,
##     stochastic = FALSE,
##     t_end = 50,
##     t_step = 1,
##     t_store = 50,
##     norm = FALSE)
## makePlot(crmExample$matrix)
## makePlotRes(crmExample$resources)


## ---- eval=FALSE--------------------------------------------------------------
## set.seed(42)
## library(miaSim)
## community.simulation <- list()
## counter_i <- 1
## for (resConc in resourceConcentration) {
##     for (medium in seq_len(n.medium)){
##         crm_params$resources <- as.numeric(resource.initial.df[medium,]*resConc)
##         paramx0 <- as.list(as.data.frame(t(community.initial.df)))
##         crm_param_iter <- list(x0 = paramx0)
##         print(paste("resConc", resConc, "medium", medium))
##         crmMoments <- generateSimulations(model = "simulateConsumerResource",
##                                           params_list = crm_params,
##                                           param_iter = crm_param_iter,
##                                           n_instances = n.instances,
##                                           t_end = 50)
##         community.simulation[[counter_i]] <- as.data.frame(do.call(rbind, lapply(crmMoments, getCommunity)))
##         counter_i <- counter_i +1
##     }
## }
## basisComposition <- do.call(rbind.data.frame, community.simulation)
## rm(counter_i, community.simulation)
## basisComposition_prop <- basisComposition / rowSums(basisComposition)


## ---- eval=FALSE--------------------------------------------------------------
## concentration <- as.factor(rep(resourceConcentration, each = n.medium*n.community))
## medium <- as.factor(rep(seq_len(n.medium), each = n.community ,times = length(resourceConcentration) ))
## community <- as.factor(rep(seq_len(n.community), times = length(resourceConcentration)*n.medium))
## 
## #plot the result in a UMAP space
## makeUMAP(basisComposition, group = medium, group2 = concentration, gradient_title = 'Medium')
## umap_CRM_gradient <- umap(basisComposition_prop)
## # umap_CRM_gradient <- umap(basisComposition)
## umap_CRM_coor <- as.data.frame(umap_CRM_gradient$layout)
## colnames(umap_CRM_coor) <- c("UMAP_1", "UMAP_2")
## umap_CRM_coor <- cbind(umap_CRM_coor, concentration, medium, community)
## umap_CRM_gradient_plot <- ggplot(umap_CRM_coor,
##                                  aes(UMAP_1, UMAP_2,
##                                      # alpha = concentration,
##                                      color = medium,
##                                      shape = community)) +
##     geom_point() +
##     # scale_shape_manual(values = c(0, 1, 2, 5, 6, 8, 15, 16, 17, 18)) +
##     scale_shape_manual(values = seq(0, n.community -1 ,1)) +
##     scale_alpha_manual(values = seq(0.25, 1, 0.75/(length(resourceConcentration)-1))) +
##     theme_bw()


## ---- eval=FALSE--------------------------------------------------------------
## print(umap_CRM_gradient_plot)
## 
## print(umap_CRM_gradient_plot + facet_grid(concentration ~ ., labeller = label_both))
## 
## print(umap_CRM_gradient_plot + facet_grid(medium ~ concentration, labeller = label_both))
## 
## print(umap_CRM_gradient_plot + facet_grid(community ~ concentration, labeller = label_both))
## 
## print(umap_CRM_gradient_plot + facet_grid(community ~ medium, labeller = label_both))


## ---- eval=FALSE--------------------------------------------------------------
## average_distance <- function(df, res_conc_type, com_type, method = "euclidean"){
##     sub_df <- df[df$concentration == res_conc_type & df$community == com_type,]
##     combines <- combn(sub_df$medium, 2)
##     distances <- NULL
##     for (i in seq_len(ncol(combines))) {
##         distances[i] <- dist(sub_df[combines[,i], c(1, 2)])
##     }
##     # print(distances)
##     return(mean(distances))
## }
## # average_distance(umap_CRM_coor, 1, 2)


## ---- eval=FALSE--------------------------------------------------------------
## distance_saturation_data <- data.frame(concentration = integer(),
##                                        community = integer(),
##                                        average_distance = numeric())
## 
## for (res_conc_type in unique(umap_CRM_coor$concentration)){
##     for (com_type in unique(umap_CRM_coor$community)){
##         ave_dist <- average_distance(umap_CRM_coor, res_conc_type, com_type)
##         distance_saturation_data[nrow(distance_saturation_data)+1,] <-
##             c(res_conc_type, com_type, ave_dist)
##     }
## }
## # View(distance_saturation_data)
## distance_saturation_data$average_distance <- as.numeric(distance_saturation_data$average_distance)
## distance_saturation_data$concentration <- as.factor(distance_saturation_data$concentration)
## distance_saturation_data$community <- as.factor(distance_saturation_data$community)
## distance_saturation_data_plot <- ggplot(distance_saturation_data,
##                                  aes(concentration, average_distance,
##                                      color = community,
##                                      group = community)) +
##     geom_line() + geom_point() +
##     scale_shape_manual(values = c(0, 1, 2, 5, 6, 8, 15, 16, 17, 18)) +
##     labs(x = "resource concentration", y = "average distance between communities in UMAP") +
##     theme_bw()
## 


## ---- eval=FALSE--------------------------------------------------------------
## print(distance_saturation_data_plot)
## # ggsave(paste0("CRMgradient_distance_curve_mod.pdf"), plot = distance_saturation_data_plot , dpi = 300, width = 12, height = 10, units = "cm", scale = 2)
microbiome/miaSim documentation built on Oct. 25, 2024, 7:16 p.m.