#' Generalized Lotka-Volterra (gLV) simulation
#'
#' Simulates time series with the generalized Lotka-Volterra model.
#'
#' Simulates a community time series using the generalized Lotka-Volterra model,
#' defined as dx/dt = x(b+Ax), where x is the vector of species abundances,
#' diag(x) is a diagonal matrix with the diagonal values set to x.
#' A is the interaction matrix and b is the vector of growth rates.
#'
#' @template man_spe
#' @param A \code{Matrix}. Interaction matrix defining the positive and negative
#' interactions between n_species. If \code{NULL}, `randomA(n_species)` is used.
#' (Default: \code{NULL})
#' @param x0 \code{Numeric scalar}. Indicates the initial abundances of
#' simulated species. If \code{NULL}, `runif(n = n_species, min = 0, max = 1)`
#' is used. (Default: \code{NULL})
#' @param growth_rates \code{Numeric scalar}. Indicates the growth rates
#' of simulated species. If \code{NULL}, `runif(n = n_species, min = 0, max = 1)`
#' is used. (Default: \code{NULL})
#' @template man_sto
#' @template man_mig
#' @template man_mod
#'
#' @return
#' \code{simulateGLV} returns a TreeSummarizedExperiment class object
#'
#' @importFrom TreeSummarizedExperiment TreeSummarizedExperiment
#' @importFrom S4Vectors DataFrame
#'
#' @examples
#'
#' # generate a random interaction matrix
#' ExampleA <- randomA(n_species = 4, diagonal = -1)
#'
#' # run the model with default values (only stochastic migration considered)
#' tse <- simulateGLV(n_species = 4, A = ExampleA)
#'
#' # run the model with two external disturbances at time points 240 and 480
#' # with durations equal to 1 (10 time steps when t_step by default is 0.1).
#' ExampleGLV <- simulateGLV(
#' n_species = 4, A = ExampleA,
#' t_external_events = c(0, 240, 480), t_external_durations = c(0, 1, 1)
#' )
#'
#' # run the model with no perturbation nor migration
#' set.seed(42)
#' tse1 <- simulateGLV(
#' n_species = 4, A = ExampleA, stochastic = FALSE,
#' sigma_migration = 0
#' )
#'
#' # run the model with no perturbation nor migration but with measurement error
#' set.seed(42)
#' tse2 <- simulateGLV(
#' n_species = 4, A = ExampleA, stochastic = FALSE,
#' error_variance = 0.001, sigma_migration = 0
#' )
#'
#' @importFrom deSolve ode
#' @importFrom stats runif rnorm
#'
#' @export
simulateGLV <- function(n_species,
names_species = NULL,
A = NULL,
x0 = NULL,
growth_rates = NULL,
sigma_drift = 0.001,
sigma_epoch = 0.1,
sigma_external = 0.3,
sigma_migration = 0.01,
epoch_p = 0.001,
t_external_events = NULL,
t_external_durations = NULL,
stochastic = TRUE,
migration_p = 0.01,
metacommunity_probability = NULL,
error_variance = 0,
norm = FALSE,
t_end = 1000, ...) {
# set the default values
if (is.null(names_species)) {
names_species <- paste0("sp", seq_len(n_species))
}
if (is.null(A)) {
A <- randomA(n_species)
}
if (is.null(x0)) {
x0 <- runif(n = n_species, min = 0, max = 1)
}
if (is.null(growth_rates)) {
growth_rates <- runif(n = n_species, min = 0, max = 1)
}
if (is.null(metacommunity_probability)) {
metacommunity_probability <- rdirichlet(1, alpha = rep(1, n_species))
}
# normalize metacommunity_probability
metacommunity_probability <- metacommunity_probability /
sum(metacommunity_probability)
# select the time points to simulate and to store
t_dyn <- .simulationTimes(t_end = t_end, ...)
# calculate the time points influenced by the disturbances
tEvent <- simulateEventTimes(
t_events = t_external_events,
t_duration = t_external_durations,
t_end = t_end,
... = ...
)
parameters <- list(
growth_rates = growth_rates, A = A, n_species = n_species,
sigma_drift = sigma_drift, stochastic = stochastic,
sigma_epoch = sigma_epoch, epoch_p = epoch_p,
sigma_external = sigma_external, tEvent = tEvent,
migration_p = migration_p,
metacommunity_probability = metacommunity_probability,
sigma_migration = sigma_migration
)
out <- ode(
y = x0,
times = t_dyn$t_sys,
func = glvModel,
parms = parameters,
events = list(func = perturb, time = t_dyn$t_sys),
maxsteps = 10^9, method = "ode45"
)
out_matrix <- out[, 2:ncol(out)]
out_matrix <- out_matrix[t_dyn$t_index, ]
if (error_variance > 0) {
measurement_error <- rnorm(
n = length(t_dyn$t_index) * n_species,
mean = 0, sd = sqrt(error_variance)
)
measurement_error <- matrix(measurement_error,
nrow = length(t_dyn$t_index)
)
out_matrix <- out_matrix + measurement_error
}
if (norm) {
out_matrix <- out_matrix / rowSums(out_matrix)
}
colnames(out_matrix) <- names_species
out_matrix <- cbind(out_matrix, time = t_dyn$t_sys[t_dyn$t_index])
TreeSE <- TreeSummarizedExperiment(
assays = list(counts = t(out_matrix[, 1:n_species])),
colData = DataFrame(time = out_matrix[, "time"]),
metadata = list(migration_p = migration_p,
error_variance = error_variance))
return(TreeSE)
}
# define the GLV Model
glvModel <- function(t, x0, parameters) {
x0[x0 < 10^-8] <- 0
growth_rates <- parameters$growth_rates
A <- parameters$A
# rate of change
dx <- x0 * (growth_rates + A %*% x0)
# return rate of change
list(dx)
}
# define the perturbation event
perturb <- function(t, y, parameters) {
with(as.list(y), {
# continuous or episodic perturbation
epoch_rN <- 0
external_rN <- 0
migration_rN <- 0
if (rbinom(1, 1, parameters$epoch_p)) {
epoch_rN <- rnorm(parameters$n_species, sd = parameters$sigma_epoch)
epoch_rN <- parameters$stochastic * epoch_rN
}
if (rbinom(1, 1, parameters$migration_p)) {
migration_rN <- rmultinom(
n = 1, size = 1,
prob = parameters$metacommunity_probability
)[, ] * abs(rnorm(
n = 1,
mean = 0, sd = parameters$sigma_migration
))
# TODO: is migration also stochastic? if so, add the following:####
# migration_rN <- parameters$stochastic*migration_rN
}
if (t %in% parameters$tEvent) {
external_rN <- rnorm(parameters$n_species,
sd = parameters$sigma_external
)
external_rN <- parameters$stochastic * external_rN
}
drift_rN <- rnorm(parameters$n_species, sd = parameters$sigma_drift)
drift_rN <- parameters$stochastic * drift_rN
# perturbation is applied to the current population
y <- y * (1 + drift_rN) * (1 + epoch_rN) * (1 + external_rN) + migration_rN
return(y * (y > 0))
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.