#' Display the patient-gene numbers during bi-clustering analysis
#'
#' Plot the curve of patient-gene number during bi-clustering analysis
#'
#' @docType methods
#'
#' @name module.curve
#' @param res.module a 'seed.module' or 'cluster.module' object returned by \code{\link{seed.module}} or \code{\link{cluster.module}}
#' @param mod the module to plot
#'
#' @author Guofeng Meng
#'
#' @references
#'
#' @details This function is used to display the patient and gene number during the bi-clustering analysis. It can be used for users to select the better gene or patient number for breakpoints.
#'
#' @return The plot for gene and patient number.
#'
#' @examples
#' module.curve(cluster.mod, 'M1')
#' @export
module.curve <- function(res.module, mod = names(res.module)[1]) {
if (length(mod) > 1) {
print("Warning: only the first elements of `mod` is used!")
mod = mod[1]
}
if (!is(res.module, "seed.module") & !is(res.module, "cluster.module"))
stop("Error: reg.module: must be the output of 'seed.module' or 'cluster.module'!")
mods = names(res.module)
mods = mods[mods != "decd.specific" & mods != "decd.input" & mods != "decd.clustering"]
if (!mod %in% mods) {
stop("Error: mod: is not recognized")
}
pas = res.module[[mod]][["curve"]][["no.patient"]]
ges = res.module[[mod]][["curve"]][["no.gene"]]
sim = res.module[[mod]][["curve"]][["score"]]
tag = sim != -1
par(mar = c(4, 4, 2, 4) + 0.1)
plot(pas, ges, pch = 16, xlab = "patients", ylab = "genes", col = "green")
lines(pas, ges, col = "green", lwd = 2)
points(pas[1], ges[1], col = "red", pch = "O")
points(pas[length(pas)], ges[length(ges)], col = "brown", pch = "O")
text(pas[length(pas)], ges[length(ges)], "max.patients", pos = 3, adj = 1)
text(pas[1], ges[1], "max.genes", pos = 4)
n = length(ges)
wh1 = wh2 = wh3 = wh4 = -1
if (n < 30) {
wh1 = wh2 = wh3 = wh4 = round((1 + n)/2)
} else {
fit = lm(ges ~ poly(pas, 10, raw = TRUE))
cf = fit$coefficients
cf[is.na(cf)] = 0
cf1 = .cof(cf)
dt = .fv(pas, cf1)
z = vapply(seq_len(n), function(m) sd(dt[seq_len(m)]), 0.1)
wh1 = which.max(z)
wh2 = which.max(ges * pas)
wh3 = which.max(dt[seq_len(length(dt) - 20)])
wh4 = which(sim == sim[tag][which.min(sim[tag])])
}
if (wh1 == wh2) {
points(pas[wh1], ges[wh1], col = "red", pch = "O")
text(pas[wh1], ges[wh1], "model", pos = 4)
} else {
points(pas[wh1], ges[wh1], col = "red", pch = "O")
text(pas[wh1], ges[wh1], "slope.clustering", pos = 4)
points(pas[wh2], ges[wh2], col = "red", pch = "O")
text(pas[wh2], ges[wh2], "max.square", pos = 4)
points(pas[wh3], ges[wh3], col = "red", pch = "O")
text(pas[wh3], ges[wh3], "min.slope", pos = 2)
points(pas[wh4], ges[wh4], col = "red", pch = "O")
text(pas[wh4], ges[wh4], "min.similarity", pos = 2)
}
if (length(tag[tag]) != 0) {
frac = (max(ges) - min(ges))/3
frac2 = (max(sim[tag]) - min(sim[tag]))/3
axis(side = 4, c(min(ges), min(ges) + frac, min(ges) + 2 * frac, max(ges)),
round(c(min(sim[tag]), min(sim[tag]) + frac2, min(sim[tag]) + 2 * frac2,
max(sim[tag])), digits = 2))
par(new = TRUE)
plot(pas[tag], sim[tag] * (max(ges) - min(ges))/(max(sim) - min(sim[tag])),
xlab = "", ylab = "", col = "brown", xaxt = "n", yaxt = "n")
lines(pas[tag], sim[tag] * (max(ges) - min(ges))/(max(sim) - min(sim[tag])),
col = "brown", lty = 2)
mtext("Similarity", side = 4, line = 3)
legend("top", c("genes", "Similarity"), col = c("green", "brown"), lty = c(1,
2), lwd = 3)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.