.ks.pval <- function(moa, sup, ks.B, A, factors, mc.cores = getOption("mc.cores", 2L)) {
rmat <- as.matrix(moa@loading[, factors]) %*% t(as.matrix(moa@fac.scr[, factors])) * A
sup <- do.call("rbind", sup)
supIdx <- apply(sup, 2, function(x) which(x != 0))
if (is.matrix(supIdx))
supIdx <- as.data.frame(supIdx)
v <- .gsva.ssgsea(rmat, geneSets = supIdx)
ll <- mclapply(1:ks.B, function(x) {
if (x%%50==0)
cat(paste("iter", x, "is finished.\n"))
mm <- apply(rmat, 2, sample, replace=TRUE)
c(.gsva.ssgsea(mm, geneSets = supIdx))
}, mc.cores = mc.cores)
cp <- do.call("cbind", ll)
pv <- sapply(1:length(v), function(i) {
p1 <- 2*(1 + sum(cp[i, ] > v[i]))/(ks.B+1)
p2 <- 2*(1 + sum(cp[i, ] < v[i]))/(ks.B+1)
pmin(p1, p2)
})
pv[pv > 1] <- 1
pv <- matrix(pv, nrow = nrow(v),
dimnames = list(rownames(v), colnames(v)))
pv
}
.gsva.rndWalk <- function(gSetIdx, geneRanking, j, R, alpha) {
# this function is copyied from GSVA package
indicatorFunInsideGeneSet <- match(geneRanking, gSetIdx)
indicatorFunInsideGeneSet[!is.na(indicatorFunInsideGeneSet)] <- 1
indicatorFunInsideGeneSet[is.na(indicatorFunInsideGeneSet)] <- 0
stepCDFinGeneSet <- cumsum((abs(R[geneRanking, j]) *
indicatorFunInsideGeneSet)^alpha) /
sum((abs(R[geneRanking, j]) *
indicatorFunInsideGeneSet)^alpha)
stepCDFoutGeneSet <- cumsum(!indicatorFunInsideGeneSet) /
sum(!indicatorFunInsideGeneSet)
walkStat <- stepCDFinGeneSet - stepCDFoutGeneSet
sum(walkStat)
}
.gsva.ssgsea <- function(X, geneSets, alpha=0.25) {
# this function is modified from GSVA package
p <- nrow(X)
n <- ncol(X)
R <- apply(X, 2, function(x) rank(x, ties.method = "min"))
es <- sapply(1:n, function(j, R, geneSets, alpha) {
geneRanking <- order(R[, j], decreasing=TRUE)
es_sample <- sapply(geneSets, .gsva.rndWalk, geneRanking, j, R, alpha)
unlist(es_sample)
}, R, geneSets, alpha)
if (length(geneSets) == 1)
es <- matrix(es, nrow=1)
rownames(es) <- names(geneSets)
colnames(es) <- colnames(X)
es
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.