Description Usage Arguments Details Value Author(s) See Also Examples
Computes an ROC-curve for probabilistic classifiers.
1 | roc(probs, true, cutoffs)
|
probs |
Numeric vector, with values between 0 and 1 |
true |
Binary vector. |
cutoffs |
Numeric vector, with DECREASING values between 1 and 0. |
The vector probs contains predicted probabilities for the response to equal 1, as produced by a probabilistic classifier like logistic regression. The cutoffs can simply represent a grid of values between 0 and 1.
A matrix with two rows which contain corresponding False Positive and True Positive Rates for all cutoffs.
Mark A. van de Wiel
For area-under-the ROC-curve: auc
. Examples: grridge
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # Load data objects
data(dataFarkas)
firstPartition <- CreatePartition(CpGannFarkas)
sdsF <- apply(datcenFarkas,1,sd)
secondPartition <- CreatePartition(sdsF,decreasing=FALSE, uniform=TRUE, grsize=5000)
# Concatenate two partitions
partitionsFarkas <- list(cpg=firstPartition, sds=secondPartition)
# A list of monotone functions from the corresponding partition
monotoneFarkas <- c(FALSE,TRUE)
#grFarkas <- grridge(datcenFarkas,respFarkas,optl=5.680087,partitionsFarkas,monotone=monotoneFarkas)
#grFarkascv <- grridgeCV(grFarkas,datcenFarkas,respFarkas,outerfold=10)
#cutoffs <- rev(seq(0,1,by=0.01))
#rocgrridgeF <- roc(probs=grFarkascv[,3],true=grFarkascv[,1],cutoffs=cutoffs)
#rocridgeF <- roc(probs=grFarkascv[,2],true=grFarkascv[,1],cutoffs=cutoffs)
#plot(rocridgeF[1,],rocridgeF[2,],type="l",lty=1,ann=FALSE,col="grey")
#points(rocgrridgeF[1,],rocgrridgeF[2,],type="l",lty=1,col="black")
#legend(0.75,0.1, legend=c("ridge","GRridge"),
# lty=c(1,1), lwd=c(1,1),col=c("grey","black"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.