Description Usage Arguments Value Author(s) See Also Examples
View source: R/PartitionsSelection.R
This function implements a procedure to optimize the use of co-data in a GRridge model. Although there is no harm to include as much as co-data in a GRridge model, ordering and selecting co-data can optimized the performance of a GRridge model. This procedure is similar with forward feature selection in a classical regression model
1 2 | PartitionsSelection(highdimdata, response, partitions,
monotoneFunctions, optl=NULL, innfold=NULL)
|
highdimdata |
Matrix or numerical data frame. Contains the primary data of the study. Columns are samples, rows are features. |
response |
Factor, numeric, binary or survival. Response values. The number of response values should equal |
partitions |
List of lists. Each list component contains a partition of the variables, which is again a list. |
monotoneFunctions |
Vector. Monotone functions from each partition. This argument is necesarily specified. If the jth component of monotone equals TRUE, then the group-penalties are forced to be monotone. If |
optl |
Global penalty parameter lambda |
innfold |
Integer. The fold for cross-validating the global regularization parameter lambda and for computing cross-validated likelihoods. Defaults LOOCV. |
A list containing (i) the indeces of the selected and ordered partitions and (ii) the optimum lambda penalty from the ridge regression.
Putri W. Novianti
Creating partitions: CreatePartition
.
Group-regularized ridge regression: grridge
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | # # Load data objects
# data(dataWurdinger)
#
# # Transform the data set to the square root scale
# dataSqrtWurdinger <- sqrt(datWurdinger_BC)
#
# #Standardize the transformed data
# datStdWurdinger <- t(apply(dataSqrtWurdinger,1,function(x){(x-mean(x))/sd(x)}))
#
# # A list of gene names in the primary RNAseq data
# genesWurdinger <- as.character(annotationWurdinger$geneSymbol)
#
# # co-data 1: a partition based on immunologic signature pathway
# # The initial gene sets (groups) are merged into five new groups, using the "mergeGroups" function
# immunPathway <- coDataWurdinger$immunologicPathway
# parImmun <- immunPathway$newClust
# # co-data 2: a partition based on a list of platelets expressed genes
# plateletsExprGenes <- coDataWurdinger$plateletgenes
# # The genes are grouped into either "NormalGenes" or "Non-overlapGenes"
# is <- intersect(plateletsExprGenes,genesWurdinger)
# im <- match(is, genesWurdinger)
# plateletsGenes <- replicate(length(genesWurdinger),"Non-overlapGenes")
# plateletsGenes[im] <- "NormalGenes"
# plateletsGenes <- as.factor(plateletsGenes)
# parPlateletGenes <- CreatePartition(plateletsGenes)
#
# # co-data 3: a partition based on chromosomal location.
# # A list of chromosomal location based on {\tt biomaRt} data bases.
# ChromosomeWur0 <- as.vector(annotationWurdinger$chromosome)
# ChromosomeWur <- ChromosomeWur0
# idC <- which(ChromosomeWur0=="MT" | ChromosomeWur0=="notBiomart" |
# ChromosomeWur0=="Un")
# ChromosomeWur[idC] <- "notMapped"
# table(ChromosomeWur)
# parChromosome <- CreatePartition(as.factor(ChromosomeWur))
#
# partitionsWurdinger <- list(immunPathway=parImmun,
# plateletsGenes=parPlateletGenes,
# chromosome=parChromosome)
#
# #A list of monotone functions from the corresponding partitions
# monotoneWurdinger <- c(FALSE,FALSE,FALSE)
#
# # Start ordering and selecting partitions
# optPartitions <- PartitionsSelection(datStdWurdinger, respWurdinger,
# partitions=partitionsWurdinger,
# monotoneFunctions=monotoneWurdinger)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.