R/calculate_performance.R

Defines functions reorder_levels prepare_data_for_plot calculate_performance get_curve get_curve_cont gen_thr_vec

Documented in calculate_performance prepare_data_for_plot reorder_levels

gen_thr_vec <- function(thresholds) {
  v <- rep(0, length(thresholds))
  names(v) <- paste0("thr", thresholds)
  v
}

## conttruth = true logFC
## estvals = estimated logFC
## svals = s-values, to rank and cutoff based on
get_curve_cont <- function(conttruth, estvals, svals, aspc) {
  if (aspc == "fsrnbr") {
    ## Get total number of features with positive, negative and zero true sign
    possign <- length(which(sign(conttruth) == 1))
    negsign <- length(which(sign(conttruth) == -1))
    zerosign <- length(which(sign(conttruth) == 0))
    
    ## subset to features with existing s-value
    kg <- intersect(names(conttruth), names(svals[!is.na(svals)]))
    svals <- sort(svals[match(kg, names(svals))])
    conttruth <- conttruth[match(names(svals), names(conttruth))]
    estvals <- estvals[match(names(svals), names(estvals))]
    
    if (any(sign(conttruth) != 0)) {
      ## Make sure that genes without logFC estimate are counted as having
      ## mismatching signs
      if (any(is.na(estvals))) {
        estvals[is.na(estvals)] <- -conttruth[is.na(estvals)]
      }
      
      ## Calculate the FSR at each s-value threshold
      unique_svals <- sort(unique(svals))
      fsrnbr <- as.data.frame(t(sapply(unique_svals, function(s) {
        ids <- which(svals <= s)
        nbr <- length(ids)
        fs <- length(which(abs(sign(conttruth[ids]) - sign(estvals[ids])) == 2))
        fsr <- fs/nbr
        ts <- length(which(sign(conttruth[ids]) == sign(estvals[ids])))
        tot_called <- length(which(!is.na(svals)))
        c(SVAL_CUTOFF = s, NBR = nbr, FS = fs, FSR = fsr, TS = ts, 
          TOT_CALLED = tot_called, POSSIGN = possign, NEGSIGN = negsign,
          ZEROSIGN = zerosign)
      })))
      return(fsrnbr)
    } else {
      return(NULL)
    }
  }
}

#' @importFrom ROCR prediction performance
get_curve <- function(bintruth, vals, revr, aspc, rank_by_abs) {
  kg <- intersect(names(bintruth), names(vals[!is.na(vals)]))
  if (any(bintruth[match(kg, names(bintruth))] == 0) &
      any(bintruth[match(kg, names(bintruth))] == 1)) {
    if (aspc %in% c("roc", "fdrtpr")) {
      tpcorr <- length(which(bintruth == 1)) /
        length(intersect(names(bintruth)[which(bintruth == 1)], kg))
      fpcorr <- length(which(bintruth == 0)) /
        length(intersect(names(bintruth)[which(bintruth == 0)], kg))
    }

    if (isTRUE(rank_by_abs))
      vals <- abs(vals)
    
    if (isTRUE(revr))
      inpvals <- 1 - vals[match(kg, names(vals))]
    else
      inpvals <- vals[match(kg, names(vals))]
    preds <- ROCR::prediction(predictions = inpvals,
                              labels = bintruth[match(kg, names(bintruth))],
                              label.ordering = c(0, 1))
    if (aspc == "roc")
      mes <- ROCR::performance(preds, measure = "tpr", x.measure = "fpr")
    else if (aspc == "fpc")
      mes <- ROCR::performance(preds, measure = "fpr", x.measure = "rpp")
    else if (aspc == "fdrtpr") {
      mes <- ROCR::performance(preds, measure = "tpr", x.measure = "ppv")
      mes2 <- ROCR::performance(preds, measure = "fpr", x.measure = "rpp")
      stopifnot(all(unlist(mes@alpha.values) == unlist(mes2@alpha.values)))
    }

    if (isTRUE(revr))
      alphas <- 1 - unlist(mes@alpha.values)
    else
      alphas <- unlist(mes@alpha.values)

    if (aspc == "roc") {
      roc = cbind(FPR = unlist(mes@x.values) / fpcorr,
                  TPR = unlist(mes@y.values) / tpcorr,
                  ROC_CUTOFF = alphas)
      return(roc)
    } else if (aspc == "fpc") {
      fpc = cbind(topN = unlist(mes@x.values) * length(kg),
                  FP = unlist(mes@y.values) *
                    length(which(bintruth[match(kg, names(bintruth))] == 0)),
                  FPC_CUTOFF = alphas)
      return(fpc)
    } else if (aspc == "fdrtpr") {
      fdrtpr = cbind(FDR = 1 - unlist(mes@x.values),
                     TPR = unlist(mes@y.values) / tpcorr,
                     NBR = round(unlist(mes2@x.values) * length(kg)),
                     CUTOFF = alphas,
                     FP = unlist(mes2@y.values) *
                       length(which(bintruth[match(kg, names(bintruth))] == 0)),
                     TOT_CALLED = length(kg))
      fdrtpr = cbind(fdrtpr,
                     TP = fdrtpr[, "TPR"] * length(which(bintruth == 1)))
      fdrtpr = cbind(fdrtpr, FN = length(
        which(bintruth[match(kg, names(bintruth))] == 1)) - fdrtpr[, "TP"])
      fdrtpr = cbind(fdrtpr, TN = fdrtpr[, "TOT_CALLED"] - fdrtpr[, "TP"] -
                       fdrtpr[, "FN"] - fdrtpr[, "FP"])
      fdrtpr = cbind(fdrtpr, DIFF = length(which(bintruth == 1)))
      fdrtpr = cbind(fdrtpr, NONDIFF = length(which(bintruth == 0)))
      return(fdrtpr)
    }
  } else {
    return(NULL)
  }
}

#' Calculate performance measures
#'
#' Calculate performance measures from a given collection of p-values, adjusted
#' p-values and scores provided in a \code{COBRAData} object.
#'
#' Depending on the collection of observations that are available for a given
#' method, the appropriate one will be chosen for each performance measure. For
#' \code{fpr}, \code{tpr}, \code{fdrtpr}, \code{fdrnbr} and \code{overlap}
#' aspects, results will only be calculated for methods where adjusted p-values
#' are included in the \code{COBRAData} object, since these calculations make
#' use of specific adjusted p-value cutoffs. For \code{fdrtprcurve} and
#' \code{fdrnbrcurve} aspects, the \code{score} observations will be
#' preferentially used, given that they are monotonically associated with the
#' adjusted p-values (if provided). If the \code{score} is not provided, the
#' nominal p-values will be used, given that they are monotonically associated
#' with the adjusted p-values (if provided). In other cases, the adjusted
#' p-values will be used also for these aspects. For \code{roc} and \code{fpc},
#' the \code{score} observations will be used if they are provided, otherwise
#' p-values and, as a last instance, adjusted p-values. Finally, for the
#' \code{fsrnbr}, \code{corr}, \code{scatter} and \code{deviation} aspects, the
#' \code{score} observations will be used if they are provided, otherwise no
#' results will be calculated.
#'
#' @param cobradata A \code{COBRAData} object.
#' @param binary_truth A character string giving the name of the column of
#'   truth(cobradata) that contains the binary truth (true assignment of
#'   variables into two classes, represented by 0/1).
#' @param cont_truth A character string giving the name of the column of
#'   truth(cobradata) that contains the continuous truth (a continuous value
#'   that the observations can be compared to).
#' @param aspects A character vector giving the types of performance measures 
#'   to calculate. Must be a subset of c("fdrtpr", "fdrtprcurve", "fdrnbr",
#'   "fdrnbrcurve", "tpr", "fpr", "roc", "fpc", "overlap", "corr", "scatter",
#'   "deviation", "fsrnbr", "fsrnbrcurve").
#' @param thrs A numeric vector of adjusted p-value thresholds for which to
#'   calculate the performance measures. Affects "fdrtpr", "fdrnbr", "tpr" and
#'   "fpr".
#' @param svalthrs A numeric vector of s-value thresholds for which to calculate
#'   the FSR. Affects "fsrnbr".
#' @param splv A character string giving the name of the column of
#'   truth(cobradata) that will be used to stratify the results. The default
#'   value is "none", indicating no stratification.
#' @param maxsplit A numeric value giving the maximal number of categories to
#'   keep in the stratification. The largest categories containing both positive
#'   and negative features will be retained. By setting this argument to `Inf`
#'   or `NA_integer_`, all categories (as well as the order of categories) will
#'   be retained.
#' @param onlyshared A logical, indicating whether to only consider features for
#'   which both the true assignment and a result (p-value, adjusted p-value or
#'   score) is given. If FALSE, all features contained in the truth table are
#'   used.
#' @param thr_venn A numeric value giving the adjusted p-value threshold to use
#'   to create Venn diagrams (if \code{type_venn} is "adjp").
#' @param type_venn Either "adjp" or "rank", indicating whether Venn diagrams
#'   should be constructed based on features with adjusted p-values below a
#'   certain threshold, or based on the same number of top-ranked features by
#'   different methods.
#' @param topn_venn A numeric value giving the number of top-ranked features to
#'   compare between methods (if \code{type_venn} is "rank").
#' @param rank_by_abs Whether to take the absolute value of the score before
#'   using it to rank the variables  for ROC, FPC, FDR/NBR and FDR/TPR curves.
#' @param prefer_pval Whether to preferentially rank variables by p-values or
#'   adjusted p-values rather than score for ROC and FPC calculations. From
#'   version 1.5.5, this is the default behaviour. To obtain the behaviour of
#'   previous versions, set to \code{FALSE}.
#'
#' @return A \code{COBRAPerformance} object
#'
#' @export
#' @author Charlotte Soneson
#' @examples
#' data(cobradata_example)
#' cobraperf <- calculate_performance(cobradata_example,
#'                                    binary_truth = "status",
#'                                    aspects = c("fdrtpr", "fdrtprcurve",
#'                                                "tpr", "roc"),
#'                                    thrs = c(0.01, 0.05, 0.1), splv = "none")
calculate_performance <- function(cobradata, binary_truth = NULL,
                                  cont_truth = NULL,
                                  aspects = c("fdrtpr", "fdrtprcurve", "fdrnbr",
                                              "fdrnbrcurve", "tpr", "fpr",
                                              "roc", "fpc", "overlap",
                                              "corr", "scatter", "deviation",
                                              "fsrnbr", "fsrnbrcurve"),
                                  thrs = c(0.01, 0.05, 0.1), 
                                  svalthrs = c(0.01, 0.05, 0.1), splv = "none",
                                  maxsplit = 3, onlyshared = FALSE,
                                  thr_venn = 0.05, type_venn = "adjp",
                                  topn_venn = 100, rank_by_abs = TRUE, 
                                  prefer_pval = TRUE) {

  ## Get all methods represented in the test result object
  ## (with at least one type of result)
  all_methods <- unique(c(colnames(pval(cobradata)), colnames(padj(cobradata)),
                          colnames(sval(cobradata)), 
                          colnames(score(cobradata))))
  
  ## If the binary_truth column is logical, convert to 0/1 values
  if (is.logical(truth(cobradata)[, binary_truth])) {
    message("binary_truth column is logical, converting to numeric (0/1)")
    truth(cobradata)[, binary_truth] <- 
      as.numeric(truth(cobradata)[, binary_truth])
  }

  ## ------------------- NBR, TP, FP etc (always calculated) ------------ ##
  if (any(c("tpr", "fdr", "fdrtpr", "fpr", "fdrnbr") %in% aspects) &&
      !is.null(binary_truth)) {
    outNBR <- outFP <- outTP <- outFN <- outTN <- outTOT_CALLED <-
      outDS <- outNONDS <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "fpr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = binary_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = binary_truth,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        if (inpcol == "padj") {
          NBR <- list()
          nbr <- gen_thr_vec(thrs)
          for (thr in thrs) {
            nbr[paste0("thr", thr)] <- length(which(tmp[i] <= thr))
          }
          NBR[[paste0(i, "_overall", "__", inpcol)]] <-
            list(basemethod = i, meas_type = inpcol, nbr = nbr)
          if (splv != "none") {
            for (j in kltmp) {
              nbr <- gen_thr_vec(thrs)
              for (thr in thrs) {
                g <- rownames(truth)[which(truth[[splv]] == j)]
                nbr[paste0("thr", thr)] <-
                  length(intersect(g, rownames(tmp)[which(tmp[i] <= thr)]))
              }
              NBR[[paste0(i, "_", splv, ":", j, "__",
                          inpcol)]] <- list(basemethod = i,
                                            meas_type = inpcol, nbr = nbr)
            }
          }

          FP <- TP <- FN <- TN <- TOT_CALLED <- DS <- NONDS <- list()
          fp <- tp <- fn <- tn <- tot_called <- ds <- nonds <- gen_thr_vec(thrs)

          for (thr in thrs) {
            signif <- rownames(tmp)[which(tmp[i] <= thr)]
            nonsignif <- rownames(tmp)[which(tmp[i] > thr)]
            fp[paste0("thr", thr)] <-
              length(intersect(
                signif, rownames(truth)[which(truth[, binary_truth] == 0)]))
            tp[paste0("thr", thr)] <-
              length(intersect(
                signif, rownames(truth)[which(truth[, binary_truth] == 1)]))
            fn[paste0("thr", thr)] <-
              length(intersect(
                nonsignif, rownames(truth)[which(truth[, binary_truth] == 1)]))
            tn[paste0("thr", thr)] <-
              length(intersect(
                nonsignif, rownames(truth)[which(truth[, binary_truth] == 0)]))
            tot_called[paste0("thr", thr)] <-
              length(intersect(rownames(tmp)[which(!is.na(tmp[i]))],
                               rownames(truth)))
            ds[paste0("thr", thr)] <- length(which(truth[, binary_truth] == 1))
            nonds[paste0("thr", thr)] <-
              length(which(truth[, binary_truth] == 0))
          }
          idx <- paste0(i, "_overall", "__", inpcol)
          FP[[idx]] <- list(basemethod = i, meas_type = inpcol, fp = fp)
          TP[[idx]] <- list(basemethod = i, meas_type = inpcol, tp = tp)
          FN[[idx]] <- list(basemethod = i, meas_type = inpcol, fn = fn)
          TN[[idx]] <- list(basemethod = i, meas_type = inpcol, tn = tn)
          TOT_CALLED[[idx]] <- list(basemethod = i, meas_type = inpcol,
                                    tot_called = tot_called)
          DS[[idx]] <- list(basemethod = i, meas_type = inpcol, ds = ds)
          NONDS[[idx]] <- list(basemethod = i,
                               meas_type = inpcol, nonds = nonds)

          if (splv != "none" & any(truth[, binary_truth] == 0)) {
            for (j in kltmp) {
              fp <- tp <- fn <- tn <- tot_called <- ds <- nonds <-
                gen_thr_vec(thrs)
              for (thr in thrs) {
                signif <- rownames(tmp)[which(tmp[i] <= thr)]
                nonsignif <- rownames(tmp)[which(tmp[i] > thr)]
                g <- rownames(truth)[which(truth[[splv]] == j)]
                gt <- intersect(
                  g, rownames(truth)[which(truth[, binary_truth] == 0)])
                gtt <- intersect(
                  g, rownames(truth)[which(truth[, binary_truth] == 1)])
                gf <- intersect(g, signif)
                gnf <- intersect(g, nonsignif)
                fp[paste0("thr", thr)] <- length(intersect(gf, gt))
                tp[paste0("thr", thr)] <- length(intersect(gf, gtt))
                fn[paste0("thr", thr)] <- length(intersect(gnf, gtt))
                tn[paste0("thr", thr)] <- length(intersect(gnf, gt))
                tot_called[paste0("thr", thr)] <-
                  length(intersect(rownames(tmp)[which(!is.na(tmp[i]))], g))
                ds[paste0("thr", thr)] <- length(gtt)
                nonds[paste0("thr", thr)] <- length(gt)
              }
              idx <- paste0(i, "_", splv, ":", j, "__", inpcol)
              FP[[idx]] <- list(basemethod = i, meas_type = inpcol, fp = fp)
              TP[[idx]] <- list(basemethod = i, meas_type = inpcol, tp = tp)
              FN[[idx]] <- list(basemethod = i, meas_type = inpcol, fn = fn)
              TN[[idx]] <- list(basemethod = i, meas_type = inpcol, tn = tn)
              TOT_CALLED[[idx]] <- list(basemethod = i, meas_type = inpcol,
                                        tot_called = tot_called)
              DS[[idx]] <- list(basemethod = i, meas_type = inpcol, ds = ds)
              NONDS[[idx]] <- list(basemethod = i, meas_type = inpcol,
                                   nonds = nonds)
            }
          }

          outNBR <- c(outNBR, NBR)
          outFP <- c(outFP, FP)
          outTP <- c(outTP, TP)
          outFN <- c(outFN, FN)
          outTN <- c(outTN, TN)
          outTOT_CALLED <- c(outTOT_CALLED, TOT_CALLED)
          outDS <- c(outDS, DS)
          outNONDS <- c(outNONDS, NONDS)
        }
      } else {
        message("column ", i, " is being ignored for NBRS calculations")
      }
    }
    if (any(sapply(lapply(outNBR, function(w) w$nbr), length) > 0)) {
      nbrs <- t(do.call(rbind, lapply(outNBR, function(w) w$nbr)))
      vn <- sapply(outNBR, function(w) w$basemethod)
      tps <- t(do.call(rbind, lapply(outTP, function(w) w$tp)))
      vtp <- sapply(outTP, function(w) w$basemethod)
      fps <- t(do.call(rbind, lapply(outFP, function(w) w$fp)))
      vfp <- sapply(outFP, function(w) w$basemethod)
      tns <- t(do.call(rbind, lapply(outTN, function(w) w$tn)))
      vtn <- sapply(outTN, function(w) w$basemethod)
      fns <- t(do.call(rbind, lapply(outFN, function(w) w$fn)))
      vfn <- sapply(outFN, function(w) w$basemethod)
      tcs <- t(do.call(rbind, lapply(outTOT_CALLED, function(w) w$tot_called)))
      vtc <- sapply(outTOT_CALLED, function(w) w$basemethod)
      dss <- t(do.call(rbind, lapply(outDS, function(w) w$ds)))
      vds <- sapply(outDS, function(w) w$basemethod)
      nds <- t(do.call(rbind, lapply(outNONDS, function(w) w$nonds)))
      vnds <- sapply(outNONDS, function(w) w$basemethod)

      nbrs <- extend_resulttable(nbrs, splv, keeplevels, "NBR",
                                 vn, domelt = TRUE)
      tps <- extend_resulttable(tps, splv, keeplevels, "TP",
                                vtp, domelt = TRUE)
      fps <- extend_resulttable(fps, splv, keeplevels, "FP",
                                vfp, domelt = TRUE)
      fns <- extend_resulttable(fns, splv, keeplevels, "FN",
                                vfn, domelt = TRUE)
      tns <- extend_resulttable(tns, splv, keeplevels, "TN",
                                vtn, domelt = TRUE)
      tcs <- extend_resulttable(tcs, splv, keeplevels, "TOT_CALLED",
                                vtc, domelt = TRUE)
      dss <- extend_resulttable(dss, splv, keeplevels, "DIFF",
                                vds, domelt = TRUE)
      nds <- extend_resulttable(nds, splv, keeplevels, "NONDIFF",
                                vnds, domelt = TRUE)

      all_nbr <- Reduce(function(...) merge(..., all = TRUE),
                        list(nbrs, tps, fps, tns, fns, tcs, dss, nds))
    } else {
      all_nbr <- data.frame()
    }
  }

  ## ----------------------------- CORR --------------------------------- ##
  if ("corr" %in% aspects & !is.null(cont_truth)) {
    outPEARSON <- list()
    outSPEARMAN <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "corr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = cont_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = NULL,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        PEARSON <- list()
        SPEARMAN <- list()
        isf <- intersect(which(is.finite(tmp[[i]])),
                         which(is.finite(truth[, cont_truth])))
        pearson <- stats::cor(tmp[[i]][isf], truth[, cont_truth][isf],
                              use = "complete.obs", method = "pearson")
        spearman <- stats::cor(tmp[[i]][isf], truth[, cont_truth][isf],
                               use = "complete.obs", method = "spearman")
        PEARSON[[paste0(i, "_overall", "__", inpcol)]] <-
          list(basemethod = i, meas_type = inpcol, pearson = pearson)
        SPEARMAN[[paste0(i, "_overall", "__", inpcol)]] <-
          list(basemethod = i, meas_type = inpcol, spearman = spearman)
        if (splv != "none") {
          for (j in kltmp) {
            g <- rownames(truth)[which(truth[[splv]] == j)]
            isf <- intersect(which(is.finite(tmp[match(g, rownames(tmp)), i])),
                             which(is.finite(truth[match(g, rownames(truth)),
                                                   cont_truth])))
            pearson <- stats::cor(tmp[match(g, rownames(tmp)), i][isf],
                                  truth[match(g, rownames(truth)),
                                        cont_truth][isf],
                                  use = "complete.obs", method = "pearson")
            spearman <- stats::cor(tmp[match(g, rownames(tmp)), i][isf],
                                   truth[match(g, rownames(truth)),
                                         cont_truth][isf],
                                   use = "complete.obs", method = "spearman")
            PEARSON[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
              list(basemethod = i, meas_type = inpcol, pearson = pearson)
            SPEARMAN[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
              list(basemethod = i, meas_type = inpcol, spearman = spearman)
          }
        }
        outPEARSON <- c(outPEARSON, PEARSON)
        outSPEARMAN <- c(outSPEARMAN, SPEARMAN)
      } else {
        message("column ", i, " is being ignored for correlation calculations")
      }
    }

    if (any(sapply(lapply(outPEARSON, function(w) w$pearson), length) > 0)) {
      pearsons <- t(do.call(rbind, lapply(outPEARSON, function(w) w$pearson)))
      spearmans <- t(do.call(rbind,
                             lapply(outSPEARMAN, function(w) w$spearman)))
      vp <- sapply(outPEARSON, function(w) w$basemethod)
      vs <- sapply(outSPEARMAN, function(w) w$basemethod)
      pearsons <- extend_resulttable(pearsons, splv, keeplevels, "PEARSON",
                                     vp, domelt = TRUE)
      spearmans <- extend_resulttable(spearmans, splv, keeplevels, "SPEARMAN",
                                      vs, domelt = TRUE)
      corrs <- merge(pearsons, spearmans)
    } else {
      corrs <- data.frame()
    }
  } else {
    corrs <- data.frame()
  }

  ## ----------------------------- TPR ---------------------------------- ##
  if (any(c("tpr", "fdrtpr", "fdrnbr") %in% aspects) & !is.null(binary_truth)) {
    outTPR <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "tpr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = binary_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = binary_truth,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        if (inpcol == "padj") {
          TPR <- list()
          tpr <- gen_thr_vec(thrs)
          for (thr in thrs) {
            signif <- rownames(tmp)[which(tmp[i] <= thr)]
            tpr[paste0("thr", thr)] <-
              length(intersect(
                signif, rownames(truth)[which(truth[, binary_truth] == 1)]))/
              length(which(truth[, binary_truth] == 1))
          }
          TPR[[paste0(i, "_overall", "__", inpcol)]] <- list(basemethod = i,
                                                             meas_type = inpcol,
                                                             tpr = tpr)

          if (splv != "none") {
            for (j in kltmp) {
              tpr <- gen_thr_vec(thrs)
              for (thr in thrs) {
                g <- rownames(truth)[which(truth[[splv]] == j)]
                signif <- intersect(g, rownames(tmp)[which(tmp[i] <= thr)])
                gt <- intersect(
                  g, rownames(truth)[which(truth[, binary_truth] == 1)])
                gf <- intersect(g, signif)
                tpr[paste0("thr", thr)] <- length(intersect(gf, gt))/length(gt)
              }
              TPR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
                list(basemethod = i, meas_type = inpcol, tpr = tpr)
            }
          }
          outTPR <- c(outTPR, TPR)
        }
      } else {
        message("column ", i, " is being ignored for TPR calculations")
      }
    }
    if (any(sapply(lapply(outTPR, function(w) w$tpr), length) > 0)) {
      tprs <- t(do.call(rbind, lapply(outTPR, function(w) w$tpr)))
      vt <- sapply(outTPR, function(w) w$basemethod)
      tprs <- extend_resulttable(tprs, splv, keeplevels, "TPR",
                                 vt, domelt = TRUE)
    } else {
      tprs <- data.frame()
    }
  } else {
    tprs <- data.frame()
  }

  ## ----------------------------- FDR ---------------------------------- ##
  if (any(c("fdrtpr", "fdrnbr") %in% aspects) & !is.null(binary_truth)) {
    outFDR <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "fdr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = binary_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = binary_truth,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        if (inpcol == "padj") {
          FDR <- list()
          fdr <- gen_thr_vec(thrs)
          for (thr in thrs) {
            signif <- rownames(tmp)[which(tmp[i] <= thr)]
            if (length(signif) == 0) {
              fdr[paste0("thr", thr)] <- 0
            } else {
              fdr[paste0("thr", thr)] <-
                length(setdiff(
                  signif, rownames(truth)[which(truth[, binary_truth] == 1)])) /
                length(signif)
            }
          }
          FDR[[paste0(i, "_overall", "__", inpcol)]] <- list(basemethod = i,
                                                             meas_type = inpcol,
                                                             fdr = fdr)

          if (splv != "none" & any(truth[, binary_truth] == 0)) {
            for (j in kltmp) {
              fdr <- gen_thr_vec(thrs)
              for (thr in thrs) {
                g <- rownames(truth)[which(truth[[splv]] == j)]
                signif <- intersect(g, rownames(tmp)[which(tmp[i] <= thr)])
                gt <- intersect(
                  g, rownames(truth)[which(truth[, binary_truth] == 0)])
                gf <- intersect(g, signif)
                if (length(gf) == 0) {
                  fdr[paste0("thr", thr)] <- 0
                } else {
                  fdr[paste0("thr", thr)] <-
                    length(intersect(gf, gt))/length(gf)
                }
              }
              FDR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
                list(basemethod = i, meas_type = inpcol, fdr = fdr)
            }
          }
          outFDR <- c(outFDR, FDR)
        }
      } else {
        message("column ", i, " is being ignored for FDR calculations")
      }
    }
    if (any(sapply(lapply(outFDR, function(w) w$fdr), length) > 0)) {
      fdrs <- t(do.call(rbind, lapply(outFDR, function(w) w$fdr)))
      vf <- sapply(outFDR, function(w) w$basemethod)

      fdrs <- extend_resulttable(fdrs, splv, keeplevels, "FDR",
                                 vf, domelt = TRUE)
      fdrs$satis <- ifelse(fdrs$FDR <= as.numeric(gsub("thr", "", fdrs$thr)),
                           "yes", "no")
      fdrs$method.satis <- paste0(fdrs$fullmethod, fdrs$satis)
    } else {
      fdrs <- data.frame()
    }
  } else {
    fdrs <- data.frame()
  }

  ## ----------------------------- FPR ---------------------------------- ##
  if ("fpr" %in% aspects & !is.null(binary_truth)) {
    outFPR <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "fpr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = binary_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = binary_truth,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        if (inpcol == "padj") {
          FPR <- list()
          fpr <- gen_thr_vec(thrs)
          for (thr in thrs) {
            signif <- rownames(tmp)[which(tmp[i] <= thr)]
            fpr[paste0("thr", thr)] <-
              length(intersect(
                signif, rownames(truth)[which(truth[, binary_truth] == 0)])) /
              length(which(truth[, binary_truth] == 0))
          }
          FPR[[paste0(i, "_overall", "__", inpcol)]] <- list(basemethod = i,
                                                             meas_type = inpcol,
                                                             fpr = fpr)

          if (splv != "none" & any(truth[, binary_truth] == 0)) {
            for (j in kltmp) {
              fpr <- gen_thr_vec(thrs)
              for (thr in thrs) {
                g <- rownames(truth)[which(truth[[splv]] == j)]
                signif <- intersect(g, rownames(tmp)[which(tmp[i] <= thr)])
                gt <- intersect(
                  g, rownames(truth)[which(truth[, binary_truth] == 0)])
                gf <- intersect(g, signif)
                fpr[paste0("thr", thr)] <- length(intersect(gf, gt))/length(gt)
              }
              FPR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
                list(basemethod = i, meas_type = inpcol, fpr = fpr)
            }
          }
          outFPR <- c(outFPR, FPR)
        }
      } else {
        message("column ", i, " is being ignored for FPR calculations")
      }
    }
    if (any(sapply(lapply(outFPR, function(w) w$fpr), length) > 0)) {
      fprs <- t(do.call(rbind, lapply(outFPR, function(w) w$fpr)))
      vff <- sapply(outFPR, function(w) w$basemethod)

      fprs <- extend_resulttable(fprs, splv, keeplevels, "FPR",
                                 vff, domelt = TRUE)
    } else {
      fprs <- data.frame()
    }
  } else {
    fprs <- data.frame()
  }

  ## ----------------------------- FSRNBR ------------------------------- ##
  if ("fsrnbr" %in% aspects && !is.null(cont_truth)) {
    outFSR <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "fsrnbr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        svl <- slot(cobradata, inpcol)[i]
        scr <- slot(cobradata, "score")[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = svl, method = i,
                                 colm = cont_truth, onlyshared = onlyshared)
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                  drop = FALSE]
        
        svlv <- structure(svl[match(allg, rownames(svl)), ], names = allg)
        scrv <- structure(scr[match(allg, rownames(scr)), ], names = allg)
        trtv <- structure(truth[, cont_truth], names = rownames(truth))
        stopifnot(all(names(svlv) == names(scrv)))
        stopifnot(all(names(svlv) == names(trtv)))
        
        ## Make sure that genes without estimated logFCs are counted as having
        ## mismatching signs
        if (any(is.na(scrv))) {
          scrv[is.na(scrv)] <- -trtv[is.na(scrv)]
        }
        
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = NULL,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)
        
        FSR <- list()
        fsr <- gen_thr_vec(svalthrs)
        fs <- gen_thr_vec(svalthrs)
        ts <- gen_thr_vec(svalthrs)
        possign <- gen_thr_vec(svalthrs)
        negsign <- gen_thr_vec(svalthrs)
        zerosign <- gen_thr_vec(svalthrs)
        totcalled <- gen_thr_vec(svalthrs)
        nbr <- gen_thr_vec(svalthrs)
        for (thr in svalthrs) {
          passed <- which(svlv <= thr)
          tested <- which(!is.na(svlv))
          nbr[paste0("thr", thr)] <- length(passed)
          fs[paste0("thr", thr)] <- 
            length(which(abs(sign(trtv[passed]) - sign(scrv[passed])) == 2))
          ts[paste0("thr", thr)] <- 
            length(which(sign(trtv[passed]) == sign(scrv[passed])))
          possign[paste0("thr", thr)] <- length(which(sign(trtv) == 1))
          negsign[paste0("thr", thr)] <- length(which(sign(trtv) == -1))
          zerosign[paste0("thr", thr)] <- length(which(sign(trtv) == 0))
          totcalled[paste0("thr", thr)] <- length(tested)
          if (length(passed) == 0) {
            fsr[paste0("thr", thr)] <- 0
          } else {
            fsr[paste0("thr", thr)] <- fs[paste0("thr", thr)]/length(passed)
          }
        }
        FSR[[paste0(i, "_overall", "__", inpcol)]] <- 
          list(basemethod = i,
               meas_type = inpcol,
               fsr = fsr,
               nbr = nbr,
               fs = fs, 
               ts = ts,
               possign = possign,
               negsign = negsign,
               zerosign = zerosign,
               totcalled = totcalled)
        
        if (splv != "none") {
          for (j in kltmp) {
            fsr <- gen_thr_vec(svalthrs)
            fs <- gen_thr_vec(svalthrs)
            ts <- gen_thr_vec(svalthrs)
            possign <- gen_thr_vec(svalthrs)
            negsign <- gen_thr_vec(svalthrs)
            zerosign <- gen_thr_vec(svalthrs)
            totcalled <- gen_thr_vec(svalthrs)
            nbr <- gen_thr_vec(svalthrs)
            g <- rownames(truth)[which(truth[[splv]] == j)]
            allg2 <- intersect(allg, g)
            svlv2 <- svlv[match(allg2, names(svlv))]
            scrv2 <- scrv[match(allg2, names(scrv))]
            trtv2 <- trtv[match(allg2, names(scrv))]
            for (thr in svalthrs) {
              passed <- which(svlv2 <= thr)
              tested <- which(!is.na(svlv2))
              nbr[paste0("thr", thr)] <- length(passed)
              fs[paste0("thr", thr)] <- 
                length(which(abs(sign(trtv2[passed]) - 
                                   sign(scrv2[passed])) == 2))
              ts[paste0("thr", thr)] <- 
                length(which(sign(trtv2[passed]) == sign(scrv2[passed])))
              possign[paste0("thr", thr)] <- length(which(sign(trtv2) == 1))
              negsign[paste0("thr", thr)] <- length(which(sign(trtv2) == -1))
              zerosign[paste0("thr", thr)] <- length(which(sign(trtv2) == 0))
              totcalled[paste0("thr", thr)] <- length(tested)
              if (length(passed) == 0) {
                fsr[paste0("thr", thr)] <- 0
              } else {
                fsr[paste0("thr", thr)] <- fs[paste0("thr", thr)]/length(passed)
              }
            }
            FSR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
              list(basemethod = i, meas_type = inpcol, fsr = fsr, nbr = nbr,
                   fs = fs, ts = ts, possign = possign, negsign = negsign,
                   zerosign = zerosign, totcalled = totcalled)
          }
        }
        outFSR <- c(outFSR, FSR)
      } else {
        message("column ", i, " is being ignored for FSR/NBR calculations")
      }
    }
    if (any(sapply(lapply(outFSR, function(w) w$fsr), length) > 0)) {
      fsrs <- t(do.call(rbind, lapply(outFSR, function(w) w$fsr)))
      nbrs <- t(do.call(rbind, lapply(outFSR, function(w) w$nbr)))
      tss <- t(do.call(rbind, lapply(outFSR, function(w) w$ts)))
      fss <- t(do.call(rbind, lapply(outFSR, function(w) w$fs)))
      possigns <- t(do.call(rbind, lapply(outFSR, function(w) w$possign)))
      negsigns <- t(do.call(rbind, lapply(outFSR, function(w) w$negsign)))
      zerosigns <- t(do.call(rbind, lapply(outFSR, function(w) w$zerosign)))
      totcalleds <- t(do.call(rbind, lapply(outFSR, function(w) w$totcalled)))
      vf <- sapply(outFSR, function(w) w$basemethod)
      
      fsrs <- extend_resulttable(fsrs, splv, keeplevels, "FSR",
                                 vf, domelt = TRUE)
      fsrs$satis <- ifelse(fsrs$FSR <= as.numeric(gsub("thr", "", fsrs$thr)),
                           "yes", "no")
      fsrs$method.satis <- paste0(fsrs$fullmethod, fsrs$satis)
      nbrs <- extend_resulttable(nbrs, splv, keeplevels, "NBR",
                                 vf, domelt = TRUE)
      tss <- extend_resulttable(tss, splv, keeplevels, "TS", vf, domelt = TRUE)
      fss <- extend_resulttable(fss, splv, keeplevels, "FS", vf, domelt = TRUE)
      possigns <- extend_resulttable(possigns, splv, keeplevels, "POSSIGN", 
                                     vf, domelt = TRUE)
      negsigns <- extend_resulttable(negsigns, splv, keeplevels, "NEGSIGN", 
                                     vf, domelt = TRUE)
      zerosigns <- extend_resulttable(zerosigns, splv, keeplevels, "ZEROSIGN", 
                                      vf, domelt = TRUE)
      totcalleds <- extend_resulttable(totcalleds, splv, keeplevels, 
                                       "TOT_CALLED", vf, domelt = TRUE)
      
      fsrs <- Reduce(function(...) merge(..., all = TRUE), 
                     list(fsrs = fsrs, nbrs = nbrs, tss = tss, fss = fss, 
                          possigns = possigns, negsigns = negsigns,
                          zerosigns = zerosigns, totcalleds = totcalleds))
    } else {
      fsrs <- data.frame()
    }
  } else {
    fsrs <- data.frame()
  }
  
  ## ------------------------- FSRNBRcurve ------------------------------ ##
  if ("fsrnbrcurve" %in% aspects & !is.null(cont_truth)) {
    outFSRNBR <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "fsrnbr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        scr <- slot(cobradata, "score")[i]
        allg <- get_keepfeatures(truth = truth(cobradata), 
                                 df = tmp, method = i, 
                                 colm = cont_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), , 
                                  drop = FALSE]
        scr <- scr[match(allg, rownames(scr)), , drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv, 
                                binary_truth = NULL, maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)
        
        FSRNBR <- list()
        conttruth <- truth[, cont_truth]
        names(conttruth) <- rownames(truth)
        vals <- tmp[[i]]
        names(vals) <- rownames(tmp)
        estvals <- scr[, i]
        names(estvals) <- rownames(scr)
        fsrnbr <- get_curve_cont(conttruth = conttruth, estvals = estvals,
                                 svals = vals, aspc = "fsrnbr")
        FSRNBR[[paste0(i, "_overall", "__", inpcol)]] <- 
          list(basemethod = i, meas_type = inpcol, fsrnbr = fsrnbr)
        if (splv != "none") {
          for (j in kltmp) {
            conttruth <- truth[which(truth[[splv]] == j), cont_truth]
            names(conttruth) <- rownames(truth)[which(truth[[splv]] == j)]
            fsrnbr <- get_curve_cont(conttruth = conttruth, estvals = estvals,
                                     svals = vals, aspc = "fsrnbr")
            if (!is.null(fsrnbr)) {
              FSRNBR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
                list(basemethod = i, meas_type = inpcol, fsrnbr = fsrnbr)
            }
          }
        }
        outFSRNBR <- c(outFSRNBR, FSRNBR)
      } else {
        message("column ", i, " is being ignored for FSRNBR calculations")
      }
    }
    if (any(sapply(lapply(outFSRNBR, function(w) w$fsrnbr),
                   length) > 0)) {
      vfsn <- sapply(outFSRNBR, function(w) w$basemethod)
      fsrnbrs <- do.call(rbind, lapply(names(outFSRNBR), function(s) {
        data.frame(FSR = outFSRNBR[[s]]$fsrnbr[, "FSR"],
                   NBR = outFSRNBR[[s]]$fsrnbr[, "NBR"],
                   CUTOFF = outFSRNBR[[s]]$fsrnbr[, "SVAL_CUTOFF"],
                   TS = outFSRNBR[[s]]$fsrnbr[, "TS"],
                   FS = outFSRNBR[[s]]$fsrnbr[, "FS"],
                   TOT_CALLED = outFSRNBR[[s]]$fsrnbr[, "TOT_CALLED"],
                   POSSIGN = outFSRNBR[[s]]$fsrnbr[, "POSSIGN"],
                   NEGSIGN = outFSRNBR[[s]]$fsrnbr[, "NEGSIGN"],
                   ZEROSIGN = outFSRNBR[[s]]$fsrnbr[, "ZEROSIGN"],
                   method = s)
      }))
      fsrnbrs <- extend_resulttable(fsrnbrs, splv, keeplevels, NULL,
                                    vfsn, domelt = FALSE)
    } else {
      fsrnbrs <- data.frame()
    }
  } else {
    fsrnbrs <- data.frame()
  }
  
  ## ------------------------- FDRTPRcurve ------------------------------ ##
  if (any(c("fdrtprcurve", "fdrnbrcurve") %in% aspects) &
      !is.null(binary_truth)) {
    outFDRTPR <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "fdrtpr", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = binary_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = binary_truth,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        if (!is.null(inpcol)) {
          if (any(truth[, binary_truth] == 0) &
              any(truth[, binary_truth] == 1)) {
            FDRTPR <- list()
            bintruth <- truth[, binary_truth]
            names(bintruth) <- rownames(truth)
            vals <- tmp[[i]]
            names(vals) <- rownames(tmp)
            fdrtpr <- get_curve(bintruth = bintruth, vals = vals,
                                revr = ifelse(inpcol == "score", FALSE, TRUE),
                                aspc = "fdrtpr", rank_by_abs = rank_by_abs)
            FDRTPR[[paste0(i, "_overall", "__", inpcol)]] <-
              list(basemethod = i, meas_type = inpcol, fdrtpr = fdrtpr)
            if (splv != "none") {
              for (j in kltmp) {
                bintruth <- truth[which(truth[[splv]] == j), binary_truth]
                names(bintruth) <- rownames(truth)[which(truth[[splv]] ==  j)]
                fdrtpr <- get_curve(bintruth = bintruth, vals = vals,
                                    revr = ifelse(inpcol == "score",
                                                  FALSE, TRUE),
                                    aspc = "fdrtpr", rank_by_abs = rank_by_abs)
                if (!is.null(fdrtpr)) {
                  FDRTPR[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
                    list(basemethod = i, meas_type = inpcol, fdrtpr = fdrtpr)
                }
              }
            }
          } else {
            FDRTPR <- NULL
          }
          outFDRTPR <- c(outFDRTPR, FDRTPR)
        }
      } else {
        message("column ", i, " is being ignored for FDRTPR calculations")
      }
    }
    if (any(sapply(lapply(outFDRTPR, function(w) w$fdrtpr),
                   length) > 0)) {
      vftp <- sapply(outFDRTPR, function(w) w$basemethod)
      fdrtprs <- do.call(rbind, lapply(names(outFDRTPR), function(s) {
        data.frame(FDR = outFDRTPR[[s]]$fdrtpr[, "FDR"],
                   TPR = outFDRTPR[[s]]$fdrtpr[, "TPR"],
                   NBR = outFDRTPR[[s]]$fdrtpr[, "NBR"],
                   CUTOFF = outFDRTPR[[s]]$fdrtpr[, "CUTOFF"],
                   TP = outFDRTPR[[s]]$fdrtpr[, "TP"],
                   FP = outFDRTPR[[s]]$fdrtpr[, "FP"],
                   TN = outFDRTPR[[s]]$fdrtpr[, "TN"],
                   FN = outFDRTPR[[s]]$fdrtpr[, "FN"],
                   TOT_CALLED = outFDRTPR[[s]]$fdrtpr[, "TOT_CALLED"],
                   DIFF = outFDRTPR[[s]]$fdrtpr[, "DIFF"],
                   NONDIFF = outFDRTPR[[s]]$fdrtpr[, "NONDIFF"],
                   method = s)
      }))
      fdrtprs <- extend_resulttable(fdrtprs, splv, keeplevels, NULL,
                                    vftp, domelt = FALSE)
    } else {
      fdrtprs <- data.frame()
    }
  } else {
    fdrtprs <- data.frame()
  }
  fdrnbrs <- fdrtprs

  ## ----------------------------- ROC ---------------------------------- ##
  if ("roc" %in% aspects & !is.null(binary_truth)) {
    outROC <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "roc", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = binary_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = binary_truth,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        if (any(truth[, binary_truth] == 0) &
            any(truth[, binary_truth] == 1)) {
          ROC <- list()
          bintruth <- truth[, binary_truth]
          names(bintruth) <- rownames(truth)
          vals <- tmp[[i]]
          names(vals) <- rownames(tmp)
          roc <- get_curve(bintruth = bintruth, vals = vals,
                           revr = ifelse(inpcol == "score", FALSE, TRUE),
                           aspc = "roc", rank_by_abs = rank_by_abs)
          ROC[[paste0(i, "_overall", "__", inpcol)]] <-
            list(basemethod = i, meas_type = inpcol, roc = roc)
          if (splv != "none") {
            for (j in kltmp) {
              bintruth <- truth[which(truth[[splv]] == j), binary_truth]
              names(bintruth) <- rownames(truth)[which(truth[[splv]] == j)]
              roc <- get_curve(bintruth = bintruth, vals = vals,
                               revr = ifelse(inpcol == "score", FALSE, TRUE),
                               aspc = "roc", rank_by_abs = rank_by_abs)
              if (!is.null(roc)) {
                ROC[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
                  list(basemethod = i, meas_type = inpcol, roc = roc)
              }
            }
          }
        }
        outROC <- c(outROC, ROC)
      } else {
        message("column ", i, " is being ignored for ROC calculations")
      }
    }

    if (any(sapply(lapply(outROC, function(w) w$roc), length) > 0)) {
      vr <- sapply(outROC, function(w) w$basemethod)
      rocs <- do.call(rbind, lapply(names(outROC), function(s) {
        data.frame(FPR = outROC[[s]]$roc[, "FPR"],
                   TPR = outROC[[s]]$roc[, "TPR"],
                   ROC_CUTOFF = outROC[[s]]$roc[, "ROC_CUTOFF"],
                   method = s)
      }))
      rocs <- extend_resulttable(rocs, splv, keeplevels, NULL,
                                 vr, domelt = FALSE)
    } else {
      rocs <- data.frame()
    }
  } else {
    rocs <- data.frame()
  }

  ## ---------------------------- SCATTER -------------------------------- ##
  if ("scatter" %in% aspects & !is.null(cont_truth)) {
    outSCATTER <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "scatter", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = cont_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = NULL,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        SCATTER <- list()
        SCATTER[[paste0(i, "_overall", "__", inpcol)]] <-
          list(basemethod = i, meas_type = inpcol,
               scatter = data.frame(vals = tmp[[i]],
                                    truth = truth[, cont_truth],
                                    row.names = rownames(tmp),
                                    stringsAsFactors = FALSE))
        if (splv != "none") {
          for (j in kltmp) {
            s <- which(truth[[splv]] == j)
            SCATTER[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
              list(basemethod = i, meas_type = inpcol,
                   scatter = data.frame(vals = tmp[[i]][s],
                                        truth = truth[s, cont_truth],
                                        row.names = rownames(tmp)[s],
                                        stringsAsFactors = FALSE))
          }
        }
      } else {
        SCATTER <- NULL
      }
      outSCATTER <- c(outSCATTER, SCATTER)
    }

    if (any(sapply(lapply(outSCATTER, function(w) w$scatter), length) > 0)) {
      vsc <- sapply(outSCATTER, function(w) w$basemethod)
      scatters <- do.call(rbind, lapply(names(outSCATTER), function(s) {
        data.frame(OBSERVATION = outSCATTER[[s]]$scatter[, "vals"],
                   TRUTH = outSCATTER[[s]]$scatter[, "truth"],
                   feature = rownames(outSCATTER[[s]]$scatter),
                   method = s)
      }))
      scatters <- extend_resulttable(scatters, splv, keeplevels, NULL,
                                     vsc, domelt = FALSE)
    } else {
      scatters <- data.frame()
    }
  } else {
    scatters <- data.frame()
  }

  ## --------------------------- DEVIATION ------------------------------- ##
  if ("deviation" %in% aspects & !is.null(cont_truth)) {
    outDEVIATION <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "deviation", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = cont_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = NULL,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        DEVIATION <- list()
        DEVIATION[[paste0(i, "_overall", "__", inpcol)]] <-
          list(basemethod = i, meas_type = inpcol,
               deviation = data.frame(vals = tmp[[i]] - truth[, cont_truth],
                                      row.names = rownames(tmp),
                                      stringsAsFactors = FALSE))
        if (splv != "none") {
          for (j in kltmp) {
            s <- which(truth[[splv]] == j)
            DEVIATION[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
              list(basemethod = i, meas_type = inpcol,
                   deviation = data.frame(vals = tmp[[i]][s] -
                                            truth[s, cont_truth],
                                          row.names = rownames(tmp)[s],
                                          stringsAsFactors = FALSE))
          }
        }
      } else {
        DEVIATION <- NULL
      }
      outDEVIATION <- c(outDEVIATION, DEVIATION)
    }

    if (any(sapply(lapply(outDEVIATION,
                          function(w) w$deviation), length) > 0)) {
      vdv <- sapply(outDEVIATION, function(w) w$basemethod)
      deviations <- do.call(rbind, lapply(names(outDEVIATION), function(s) {
        data.frame(DEVIATION = outDEVIATION[[s]]$deviation[, "vals"],
                   feature = rownames(outDEVIATION[[s]]$deviation),
                   method = s)
      }))
      deviations <- extend_resulttable(deviations, splv, keeplevels, NULL,
                                       vdv, domelt = FALSE)
    } else {
      deviations <- data.frame()
    }
  } else {
    deviations <- data.frame()
  }

  ## ----------------------------- FPC ---------------------------------- ##
  if ("fpc" %in% aspects & !is.null(binary_truth)) {
    outFPC <- list()
    keeplevels <- c()
    for (i in all_methods) {
      inpcol <- select_measure(cobradata, i, asp = "fpc", 
                               prefer_pval = prefer_pval)
      if (!is.null(inpcol)) {
        tmp <- slot(cobradata, inpcol)[i]
        allg <- get_keepfeatures(truth = truth(cobradata),
                                 df = tmp,  method = i,
                                 colm = binary_truth, onlyshared = onlyshared)
        tmp <- tmp[match(allg, rownames(tmp)), , drop = FALSE]
        truth <- truth(cobradata)[match(allg, rownames(truth(cobradata))), ,
                                 drop = FALSE]
        kltmp <- get_keeplevels(truth = truth, splv = splv,
                                binary_truth = binary_truth,
                                maxsplit = maxsplit)
        keeplevels <- union(keeplevels, kltmp)

        if (any(truth[, binary_truth] == 0) &
            any(truth[, binary_truth] == 1)) {
          FPC <- list()
          bintruth <- truth[, binary_truth]
          names(bintruth) <- rownames(truth)
          vals <- tmp[[i]]
          names(vals) <- rownames(tmp)
          fpc <- get_curve(bintruth = bintruth, vals = vals,
                           revr = ifelse(inpcol == "score", FALSE, TRUE),
                           aspc = "fpc", rank_by_abs = rank_by_abs)
          FPC[[paste0(i, "_overall", "__", inpcol)]] <-
            list(basemethod = i, meas_type = inpcol, fpc = fpc)
          if (splv != "none") {
            for (j in kltmp) {
              bintruth <- truth[which(truth[[splv]] == j), binary_truth]
              names(bintruth) <- rownames(truth)[which(truth[[splv]] == j)]
              fpc <- get_curve(bintruth = bintruth, vals = vals,
                               revr = ifelse(inpcol == "score", FALSE, TRUE),
                               aspc = "fpc", rank_by_abs = rank_by_abs)
              if (!is.null(fpc)) {
                FPC[[paste0(i, "_", splv, ":", j, "__", inpcol)]] <-
                  list(basemethod = i, meas_type = inpcol, fpc = fpc)
              }
            }
          }
        }
        outFPC <- c(outFPC, FPC)
      } else {
        message("column ", i, " is being ignored for FPC calculations")
      }
    }

    if (any(sapply(lapply(outFPC, function(w) w$fpc), length) > 0)) {
      vfc <- sapply(outFPC, function(w) w$basemethod)
      fpcs <- do.call(rbind, lapply(names(outFPC), function(s) {
        data.frame(topN = outFPC[[s]]$fpc[, "topN"],
                   FP = outFPC[[s]]$fpc[, "FP"],
                   FPC_CUTOFF = outFPC[[s]]$fpc[, "FPC_CUTOFF"],
                   method = s)
      }))
      fpcs <- extend_resulttable(fpcs, splv, keeplevels, NULL,
                                 vfc, domelt = FALSE)
    } else {
      fpcs <- data.frame()
    }
  } else {
    fpcs <- data.frame()
  }

  ## --------------------------- OVERLAP -------------------------------- ##
  if ("overlap" %in% aspects) {
    tmplist <- padj(cobradata)
    if (length(tmplist) > 0) {
      if (!is.null(binary_truth)) {
        ## Add 'truth' to list of results, if type_venn is not 'rank' since in
        ## that case, the 'true' genes can be ranked in any order
        if (type_venn == "rank") {
          message(paste0("Note that including truth with type_venn = 'rank' ", 
                         "is not supported, since true features may be ", 
                         "ranked in arbitrary order"))
        } else {
          tmp2 <- 1 - truth(cobradata)[, binary_truth, drop = FALSE]
          colnames(tmp2) <- "truth"
          missing_genes <- setdiff(rownames(tmp2), rownames(tmplist))
          tmpadd <- as.data.frame(matrix(NA, length(missing_genes), 
                                         ncol(tmplist),
                                         dimnames = list(missing_genes,
                                                         colnames(tmplist))))
          tmplist <- rbind(tmplist, tmpadd)
          tmplist$truth <- tmp2$truth[match(rownames(tmplist), rownames(tmp2))]
        }
      }

      ## Create matrix indicating "significant" features
      if (type_venn == "adjp") {
        overlap <- apply(tmplist, 2, function(w) {
          as.numeric(w <= thr_venn)
        })
      } else if (type_venn == "rank") {
        overlap <- apply(tmplist, 2, function(w) {
          as.numeric(w <= sort(w, decreasing = FALSE)[topn_venn])
        })
        if ("truth" %in% colnames(overlap)) {
          overlap[, "truth"] <- as.numeric(tmplist[, "truth"] == 0)
        }
      }
      common_genes <- rownames(tmplist)
      rownames(overlap) <- common_genes
      overlap <- overlap[, which(colSums(is.na(overlap)) != nrow(overlap))]

      ## Assume that if we don't have information about a gene, it is "negative"
      ##overlap[is.na(overlap)] <- 0
      overlap <- data.frame(overlap, stringsAsFactors = FALSE)

      ## If splv is not "none", split overlap matrix
      if (splv != "none") {
        overlap_overall <- overlap
        keep <- intersect(rownames(overlap), rownames(truth(cobradata)))
        tth <- truth(cobradata)[match(keep, rownames(truth(cobradata))), ]
        keeplevels <- get_keeplevels(truth = tth, splv = splv,
                                     binary_truth = NULL, maxsplit = maxsplit)
        overlap <- overlap[match(keep, rownames(overlap)), ]
        overlap <- split(overlap, tth[, splv])
        ## Keep only the top "maxsplit" categories
        overlap <- overlap[keeplevels]
        ## Add the overall category
        overlap$overall <- overlap_overall
      }
    } else {
      overlap <- data.frame()
    }
  } else {
    overlap <- data.frame()
  }

  ## --------------------------- RETURNS -------------------------------- ##
  ## Put data together
  if ("fdrtpr" %in% aspects & !is.null(binary_truth)) {
    fdrtpr <- Reduce(function(...) merge(..., all = TRUE),
                     list(all_nbr, tprs, fdrs))
  } else {
    fdrtpr <- data.frame()
  }
  if ("fdrnbr" %in% aspects & !is.null(binary_truth)) {
    fdrnbr <- Reduce(function(...) merge(..., all = TRUE),
                     list(all_nbr, tprs, fdrs))
  } else {
    fdrnbr <- data.frame()
  }
  if ("tpr" %in% aspects & !is.null(binary_truth)) {
    tprs <- Reduce(function(...) merge(..., all = TRUE),
                   list(all_nbr, tprs))
  }
  if ("fpr" %in% aspects & !is.null(binary_truth)) {
    fprs <- Reduce(function(...) merge(..., all = TRUE),
                   list(all_nbr, fprs))
  }

  if (!("tpr" %in% aspects)) tprs <- data.frame()
  if (!("fdrtprcurve" %in% aspects)) fdrtprcurve <- data.frame()
  if (!("fdrnbrcurve" %in% aspects)) fdrnbrcurve <- data.frame()
  if (!("fsrnbrcurve" %in% aspects)) fsrnbrcurve <- data.frame()
  
  COBRAPerformance(tpr = tprs, fpr = fprs, fdrtprcurve = fdrtprs,
                   fdrnbrcurve = fdrnbrs, deviation = deviations,
                   roc = rocs, fpc = fpcs, fdrtpr = fdrtpr, fdrnbr = fdrnbr,
                   maxsplit = maxsplit, overlap = overlap, splv = splv,
                   corr = corrs, scatter = scatters, onlyshared = onlyshared,
                   fsrnbrcurve = fsrnbrs, fsrnbr = fsrs)

}

#' Prepare data for plotting
#'
#' Prepare performance data provided in a \code{COBRAPerformance} object
#' (obtained by \code{\link{calculate_performance}}) for plotting.
#'
#' @param cobraperf A \code{COBRAPerformance} object.
#' @param keepmethods A character vector consisting of methods to retain for
#'   plotting (these should be a subset of \code{basemethods(cobraperf)}), or
#'   NULL (indicating that all methods represented in cobraperf should be
#'   retained).
#' @param incloverall A logical indicating whether the "overall" results should
#'   be included if the results are stratified by an annotation.
#' @param colorscheme Either a character string giving the color palette to use
#'   to define colors for the different methods, or a character vector with
#'   colors to use. The available pre-defined palettes depend on the number of
#'   different methods to distinguish. The choices are:
#'   \describe{
#'   \item{- \code{Accent}}{(max 8 methods)}
#'   \item{- \code{Dark2}}{(max 8 methods)}
#'   \item{- \code{Paired}}{(max 12 methods)}
#'   \item{- \code{Pastel1}}{(max 9 methods)}
#'   \item{- \code{Pastel2}}{(max 8 methods)}
#'   \item{- \code{Set1}}{(max 9 methods)}
#'   \item{- \code{Set2}}{(max 8 methods)}
#'   \item{- \code{Set3}}{(max 12 methods)}
#'   \item{- \code{hue_pal}}{}
#'   \item{- \code{rainbow}}{}
#'   \item{- \code{heat}}{}
#'   \item{- \code{terrain}}{}
#'   \item{- \code{topo}}{}
#'   \item{- \code{cm}}{}
#'   }
#'   If the number of allowed methods is exceeded, the colorscheme defaults to
#'   \code{hue_pal}.
#' @param facetted A logical indicating whether the results should be split into
#'   subpanels when stratified by an annotation (\code{TRUE}), or kept in the
#'   same panel but shown with different colors (\code{FALSE}).
#' @param incltruth A logical indicating whether the truth should be included in
#'   Venn diagrams.
#' @param conditionalfill A logical indicating whether the points (in FDR/TPR,
#'   FDR/NBR, FSR/NBR plots) should be filled conditional on whether they
#'   satisfy the imposed criterion (e.g., false discovery rate control at
#'   imposed threshold).
#'
#' @return A \code{COBRAPlot} object
#'
#' @export
#' @author Charlotte Soneson
#' @examples
#' data(cobradata_example)
#' cobraperf <- calculate_performance(cobradata_example,
#'                                    binary_truth = "status",
#'                                    cont_truth = "none",
#'                                    aspects = c("fdrtpr", "fdrtprcurve",
#'                                                "tpr", "roc"),
#'                                    thrs = c(0.01, 0.05, 0.1), splv = "none")
#' cobraplot <- prepare_data_for_plot(cobraperf, keepmethods = NULL,
#'                                    colorscheme = "Dark2")
#'
#' ## User-specified colors
#' cobraplot2 <- prepare_data_for_plot(cobraperf, keepmethods = NULL,
#'                                    colorscheme = c("blue", "red", "green"))
prepare_data_for_plot <- function(cobraperf, keepmethods = NULL,
                                  incloverall = TRUE, colorscheme = "hue_pal",
                                  facetted = TRUE, incltruth = TRUE,
                                  conditionalfill = TRUE) {
  splitval <- NULL
  if (is.null(keepmethods)) {
    keepmethods <- basemethods(cobraperf)
  }

  if (length(intersect(basemethods(cobraperf), keepmethods)) == 0)
    return(COBRAPlot())

  ## Subset cobraperf object
  cobraperf <- cobraperf[, keepmethods]

  ## Exclude truth from overlap matrix
  ## If truth not included, keep all features and set NAs to 0
  if (!isTRUE(incltruth)) {
    if (length(overlap(cobraperf)) != 0) {
      if (is(overlap(cobraperf), "data.frame")) {
        overlap(cobraperf) <-
          overlap(cobraperf)[, setdiff(colnames(overlap(cobraperf)), "truth"),
                            drop = FALSE]
        overlap(cobraperf)[is.na(overlap(cobraperf))] <- 0
      } else {
        overlap(cobraperf) <- lapply(overlap(cobraperf), function(w) {
          w <- w[, setdiff(colnames(w), "truth"), drop = FALSE]
          w[is.na(w)] <- 0
          w
        })
      }
    }
  } else {
    ## If truth is included, what to do depends on onlyshared.
    ## If onlyshared = FALSE, remove all features where truth!=NA
    ## If onlyshared = TRUE, remove all features with any NA
    if (length(overlap(cobraperf)) != 0) {
      if (is(overlap(cobraperf), "data.frame")) {
        if ("truth" %in% colnames(overlap(cobraperf))) {
          if (isTRUE(onlyshared(cobraperf))) {
            overlap(cobraperf) <-
              overlap(cobraperf)[which(rowSums(is.na(overlap(cobraperf))) == 0),
                                , drop = FALSE]
          } else {
            overlap(cobraperf) <-
              overlap(cobraperf)[which(!is.na(overlap(cobraperf)$truth)),
                                , drop = FALSE]
          }
        }
        overlap(cobraperf)[is.na(overlap(cobraperf))] <- 0
      } else {
        overlap(cobraperf) <- lapply(overlap(cobraperf), function(w) {
          if ("truth" %in% colnames(w)) {
            if (isTRUE(onlyshared(cobraperf))) {
              w <- w[which(rowSums(is.na(w)) == 0), , drop = FALSE]
            } else {
              w <- w[which(!is.na(w$truth)), , drop = FALSE]
            }
          } else
            w <- w
          w[is.na(w)] <- 0
          w
        })
      }
    }
  }

  ## Define colors
  use_colors <- define_colors(cobraperf = cobraperf, palette = colorscheme,
                              facetted = facetted, incloverall = incloverall, 
                              conditionalfill = conditionalfill)

  ## Exclude overall level
  for (sl in c("tpr", "fpr", "corr", "roc", "fpc", "scatter", "deviation",
               "fdrtprcurve", "fdrtpr", "fdrnbrcurve", "fdrnbr", 
               "fsrnbrcurve")) {
    if (splv(cobraperf) != "none") {
      if (!(isTRUE(incloverall))) {
        if (length(slot(cobraperf, sl)) != 0)
          slot(cobraperf, sl) <- subset(slot(cobraperf, sl),
                                       splitval != "overall")
      }
    }
    if (length(slot(cobraperf, sl)) != 0) {
      if (isTRUE(facetted))
        slot(cobraperf, sl)$num_method <-
          as.numeric(as.factor(slot(cobraperf, sl)$method))
      else
        slot(cobraperf, sl)$num_method <-
          as.numeric(as.factor(slot(cobraperf, sl)$fullmethod))
    }
  }

  if (splv(cobraperf) != "none") {
    if (!(isTRUE(incloverall))) {
      if (length(overlap(cobraperf)) != 0)
        overlap(cobraperf)$overall <- NULL
    }
  }

  cobraperf <- as(cobraperf, "COBRAPlot")
  facetted(cobraperf) <- facetted
  plotcolors(cobraperf) <- use_colors
  cobraperf
}

#' Reorder levels in COBRAPlot object
#'
#' Reorder levels in COBRAPlot object to achieve desired ordering in figure
#' legends etc. If facetted(cobraplot) is TRUE, the releveling will be applied
#' to the "method" column. If facetted(cobraplot) is FALSE, it will be applied
#' to the "fullmethod" column.
#'
#' @param cobraplot A COBRAPlot object
#' @param levels A character vector giving the order of the levels. Any values
#'   not present in the COBRAPlot object will be removed. Any methods present in
#'   the COBRAPlot object but not contained in this vector will be added at the
#'   end.
#'
#' @return A COBRAPlot object
#' @author Charlotte Soneson
#'
#' @examples
#' data(cobradata_example_sval)
#' cobraperf <- calculate_performance(cobradata_example_sval,
#'                                    binary_truth = "status", aspects = "fpr")
#' cobraplot <- prepare_data_for_plot(cobraperf, colorscheme = "Dark2",
#'                                    incltruth = TRUE)
#' cobraplot <- reorder_levels(cobraplot, c("Method2", "Method1"))
#' 
#' @export
reorder_levels <- function(cobraplot, levels) {
  if (isTRUE(facetted(cobraplot))) column <- "method"
  else column <- "fullmethod"

  for (sl in c("tpr", "fpr", "corr", "roc", "fpc", "scatter", "deviation",
               "fdrtprcurve", "fdrtpr", "fdrnbrcurve", "fdrnbr",
               "fsrnbrcurve", "fsrnbr")) {
    if (length(slot(cobraplot, sl)) != 0) {
      levels_to_keep <- levels[which(levels %in% slot(cobraplot, sl)[, column])]
      if (length(setdiff(unique(slot(cobraplot, sl)[, column]),
                         levels_to_keep)) != 0) {
        message("The following methods have been added to the ", sl, " slot: ",
                paste0(setdiff(unique(as.character(slot(cobraplot,
                                                        sl)[, column])),
                               levels_to_keep), collapse = ", "))
        levels_to_keep <-
          c(levels_to_keep,
            sort(setdiff(unique(as.character(slot(cobraplot, sl)[, column])),
                         levels_to_keep)))
      }
      slot(cobraplot, sl)[, column] <-
        factor(as.character(slot(cobraplot, sl)[, column]),
               levels = levels_to_keep)

      slot(cobraplot, sl)$num_method <-
        as.numeric(slot(cobraplot, sl)[, column])
    }
  }
  cobraplot
}
markrobinsonuzh/iCOBRA documentation built on Nov. 7, 2024, 7:11 a.m.