R/findClusters.R

Defines functions findClusters .makeClusters

Documented in findClusters

.makeClusters <- function(scores.chr, w.size, n.med, n.consec, cut, count = FALSE,
                          verbose)
{
    mergeOverlaps <- function(query, subject)
    {
        candidates <- slice(coverage(c(query, subject)), lower = 1, rangesOnly = TRUE)
        candidates[countOverlaps(candidates, query) > 0]
    }

    clusterScores <- function(x)
    {
        n.pad <- (w.size - 1) / 2
        med.scores <- apply(embed(x, w.size), 1, median)
        med.cut <- med.scores > cut
        med.cut <- c(rep(FALSE, n.pad), med.cut, rep(FALSE, n.pad))
        med.cut.n <- as.numeric(filter(med.cut, rep(1/w.size, w.size), sides = 2, circular = FALSE)) > (n.med / w.size)
        med.cut.n[is.na(med.cut.n)] <- FALSE
        score.cut <- x > 0

        # Window extension.
        mediansCut <- med.cut & med.cut.n
                
        cl.candidates <- mergeOverlaps(IRanges(mediansCut), IRanges(score.cut))
                
	# Minimum consecutive genes above score cutoff.
        cl.final <- cl.candidates[width(cl.candidates) >= n.consec]
		
        if(count)
	    length(cl.final)
	else
	    as.numeric(coverage(cl.final, width = length(x)))
    }

    if(count)
    	apply(scores.chr, 2, clusterScores)
    else
    	clusterScores(scores.chr[, 1])
}

findClusters <- function(stats, score.col = NULL, w.size = NULL, n.med = NULL, n.consec = NULL,
                         cut.samps = NULL, maxFDR = 0.05, trend = c("down", "up"), n.perm = 100,
                         getFDRs = FALSE, verbose = TRUE)
{
    if(is.null(score.col))
        stop("Score column not given.")
    if(is.null(w.size))
        stop("Window size not given.")
    if(w.size %% 2 == 0)
        stop("Window size must be an odd number.")
    if(is.null(n.med))
        stop("Minimum median scores in window above cutoff not given.")
    if(is.null(n.consec))
        stop("Minimum consecutive scores in same direction not given.")
    if(is.null(cut.samps))
        stop("Cutoffs to try not given.")

    trend <- match.arg(trend)
    
    # Do check in case users pass in some rows with NA scores.
    stats <- stats[!is.na(stats[, score.col]), ]

    # Simplifies processing in .makeClusters.
    if(trend == "down")
        scores <- -stats[, score.col]
    else
        scores <- stats[, score.col]

    perms <- 1:n.perm
    perm.scores <- sapply(perms, function(x) scores[sample(nrow(stats))])
    # Column 1 : Real Scores. Columns following : Permuted scores.
    chr.scores <- split(data.frame(scores, perm.scores), stats$chr)

    # Find the number of clusters at each cutoff, in the real and permuted data.
    clusts <- lapply(cut.samps, function(x){
                     if(verbose == TRUE) message("Counting clusters at cutoff ", x)
                     n.clusts.chrs <- lapply(chr.scores, .makeClusters, w.size,
                                             n.med, n.consec, abs(x), TRUE, verbose)
                     n.clusts <- colSums(do.call(rbind, n.clusts.chrs))
                     
                     # Element 1 : Number of clusters in real data.
                     # Element 2 : Average number of clusters in permuted scores.
                     return(c(n.clusts[1], round(mean(n.clusts[2:length(n.clusts)]))))
                     })

    # Find the FDR of each cutoff tried.
    allFDR <- sapply(clusts, function(x)
                    {
                        FDR <- x[2] / x[1]
                        if((is.nan(FDR))) # 0 / 0 case
                            FDR = 0
                        FDR
                    })

    FDRtable <- data.frame(cutoff = cut.samps, FDR = allFDR)
    best.cut <- cut.samps[match(TRUE, allFDR < maxFDR)]
    
    if(verbose)
        message("Using the cutoff ", best.cut, " for a FDR of < ", maxFDR)

    in.clust <- unlist(lapply(chr.scores,
                              function(x) .makeClusters(x, w.size, n.med, n.consec,
                                                        abs(best.cut))
                      ))

    # Join adjoining clusters, keeping consecutive indexing.
    cl.index = 1
    for(i in 2:length(in.clust))
    {
    	if(in.clust[i - 1] == 0 && in.clust[i] > 0)
	{
		in.clust[i] = cl.index
	} else if(in.clust[i - 1] > 0 && in.clust[i] > 0)
	{
		in.clust[i] = cl.index
	} else if((in.clust[i - 1] > 0 && in.clust[i] == 0))
	{
		cl.index = cl.index + 1
	}
    }

    stats$cluster <- in.clust

    if(getFDRs)
    	list(table = stats, FDRs = FDRtable)
    else
    	stats
}
markrobinsonuzh/Repitools documentation built on March 20, 2024, 6:04 a.m.